Higgs Searches at the Tevatron

Venkat Kaushik (Apr 18 2007)

Experimental Apparatus - Tevatron

- •Tevatron: Proton Antiproton Collider
- $\sqrt{s} = 1.96 \,\text{TeV}$
- $\boldsymbol{\cdot}$ DØ and CDF experiments among others
- Bunch crossing every 396ns
- •W/Z factory Precision electro weak measurements

FERMILAB'S ACCELERATOR CHAIN

Experimental Apparatus – DØ Detector

Dataset

Why Search for Higgs?

- Many years of work has lead to our understanding of matter and its interactions: The Standard Model
- Ingredients of the Standard Model
 - Matter Particles (fermions):
 - Quarks and Leptons
 - Force Carriers (bosons):
 - Gluon, photon, W[±] / Z⁰
- This model is not the complete description of nature:
 - Does NOT explain the particle masses!
 - But we observe masses on an everyday basis!

Why Search for Higgs?

- Electroweak (EW) theory is well understood
 - SU(2)_L x U(1)_y: very precisely tested by collider experiments
 - Its not a symmetry of our vacuum. Otherwise all the quarks, leptons and the gauge bosons would be massless!
 - 1964: Peter Higgs proposed a simple model
 - Add one complex doublet of scalar fields in a ϕ^4 potential

$$L_{Higgs} = \left| (\partial_{\mu} - igW^{\alpha}_{\mu}T^{\alpha} - \frac{i}{2}kB_{\mu})\phi \right|^{2} - \mu^{2}\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^{2}$$

- Symmetric solution: Unstable
- Broken EW symmetry creates non-zero VEV
- W[±] / Z⁰ absorb three degrees of freedom
- Remaining becomes a neutral scalar
- Mass of Higgs Boson not predicted!

How massive is Higgs?

Higgs Search at the Tevatron

SUSY Higgs Working Group (SHWG) 10/2000

Higgs Sensitivity Group (HSG) 6/2003

- Higgs search feasible at Tevatron
 - No golden channel
 - Rely on equally two sensitive experiments

Higgs Search at the Tevatron

- o Gluon Fusion dominates for hadron colliders
 - \checkmark Large backgrounds to Higgs decay
- o Associated Production with vector bosons
 - ✓ Best at low mass (m_H < 135 GeV)
 - Leptonic decays of W / Z bosons provide good handles for triggering and analysis
 - Low mass Higgs prefers to decay to bottom quark pairs
 - Need efficient identification of bottom quarks to reduce backgrounds

Experimental Event Signature

- Isolated Lepton
 - electron/muon
- Large Missing Transverse Energy
 - \cdot MET or E_{T}
- Exactly two Jets (tagged as b-jets)

Physics Background to WH Signal

Simulated Background Samples

Process	Generator	$\sigma(\times {\rm BR})[{\rm pb}]$	# events
$W b \overline{b} \rightarrow e \nu b \overline{b}$	ALPGEN + PYTHIA	3.35	205328
$Wb\overline{b} \to \tau \nu b\overline{b}$	ALPGEN + PYTHIA	3.35	205328
$m_H = 105 \mathrm{GeV}$		0.0222	48250
$m_H = 115 \mathrm{GeV}$	antestas para protes mas	0.0150	30650
$HW \to b\bar{b} + e\nu$, $m_H = 125 \mathrm{GeV}$	PYTHIA (CS compliant)	0.0093	32057
$m_H = 135 \mathrm{GeV}$		0.0045	46734
$m_H = 145 \mathrm{GeV}$		0.0022	53131
$m_H = 105 \mathrm{GeV}$		0.0039	46497
$m_H = 115 \mathrm{GeV}$	2025 2025 20	0.0026	51751
$HW \to b\bar{b} + \tau\nu$, $\tau \to e$, $m_H = 125 \mathrm{GeV}$	PYTHIA (CS compliant)	0.0016	48054
$m_H = 135 \mathrm{GeV}$		0.00078	49330
$m_H = 145 \mathrm{GeV}$		0.00038	45779
$Wjj \rightarrow e \nu + jj$	ALPGEN + PYTHIA	287.3	1476040
$Wjj \rightarrow \tau \nu + jj$	ALPGEN + PYTHIA	287.3	89060
Zjj ightarrowee $+jj$	ALPGEN + PYTHIA	27.2	706330
$\gamma^*/Z \to \tau \tau, \hat{m} \in (60, 130 \mathrm{GeV})$	PYTHIA (CS compliant)	255.0	189342
$W \to \tau \nu_{\tau}$	PYTHIA (CS compliant)	2775	277366
$t\bar{t} \rightarrow b\bar{b} + \ell^+\ell^- + E_T, m_t = 175 \mathrm{GeV}$	ALPGEN + PYTHIA	0.70	91402
$t\bar{t} \rightarrow b\bar{b} + 2j + \ell + \not\!$	ALPGEN + PYTHIA	2.90	76433
Single top s-channel $(tb \rightarrow e \nu \ bb)$	CompHEP + PYTHIA	0.115	137824
single top <i>t</i> -channel $(tqb \rightarrow e \nu \ bqb)$	CompHEP + PYTHIA	0.258	86742
$WW \rightarrow l\nu jj$	PYTHIA	2.672	95520
$WZ \rightarrow l\nu jj$	PYTHIA	0.824	92315
$WZ \rightarrow lljj$	PYTHIA	0.243	91460
$ZZ \rightarrow lljj$	PYTHIA	0.205	92560

Current Results on SM Higgs Search at Tevatron

Higgs mass	$105 {\rm GeV}$	$115 {\rm GeV}$	$125 {\rm GeV}$	$135 { m GeV}$	$145 {\rm GeV}$
WH	0.4	0.27	0.17	0.09	0.04
WW, WZ, ZZ	3.3	2.5	1.1	0.4	0.15
$W b \bar{b}$	6.6	6.6	4.5	3.4	2.5
$tar{t}$	3.9	4.3	4.4	4.5	4.5
Single top	2.3	2.3	2.4	2.4	2.2
QCD / W or Z +jets	19.2	30.6	23.3	19.0	16.4
Total expectation	50.9	45.1	35.7	29.7	25.7
Data	40	32	32	27	27
WH	0.37	0.28	0.17	0.09	0.04
WZ	1.4	1.0	0.60	0.22	0.05
W b ar b	4.2	3.6	3.0	2.4	2.0
$tar{t}$	2.0	2.1	2.4	2.2	2.3
Single top	0.89	0.89	0.92	0.89	2.0
QCD / W or Z +jets	1.8	1.6	1.4	1.2	1.0
Total expectation	10.5	9.3	8.1	6.9	6.3
Data	7	6	7	6	6
Combined Cross section limit (pb)	2.4	2.4	2.9	2.8	2.6
Expected Cross section limit (pb)	4.0	3.5	3.4	3.0	2.8

- WH e/µ channels combined
- Combination yields upper limits on cross section ranging from 2.4pb to 2.9pb for single tag
- $p\overline{p} \rightarrow W / ZH \rightarrow \ell v b \overline{b} / v \overline{v} \overline{b} \overline{b} / \ell^+ \ell^- b \overline{b}$
- $p\overline{p} \to WH \to WW^+W^-$
- $p\overline{p} \to H \to W^+W^-$

Triggering on Single Electon – Example

E1_SHT20

- \cdot L1 \rightarrow one calorimeter EM trigger tower with Et>11 GeV. Veto on cal_unsuppressed condition.
- \cdot L2 \rightarrow Requires a standard L2 EM cluster with a threshold >= 15 GeV.

 \cdot L3 \rightarrow The trigger bit set to true if an electron is found satisfying tight shower shape requirements with Et>20. GeV

· Some triggers are selectively prescaled

Single EM "OR" Triggers - Parameterization

•Using "OR" of all calorimeter based triggers

 Applied luminosity weighted trigger efficiency as an event weight to MC events

 Average Luminosity weighted Trigger Probability:

- 84% (v8-11)
- 87% (v12-13)
- 87% (v14)

	Α	В	С	D	E
V8_OR_ALL_CALO	23.66 ± 0.23	1.46 ± 0.23	0.67 ± 0.00	15.92 ± 1.21	11.10 ± 1.00
V12_OR_ALL_CALO	21.11 ± 0.27	1.66 ± 0.23	0.66 ± 0.00	20.10 ± 0.75	7.23 ± 0.49
V13_OR_ALL_CALO	23.38 ± 0.08	0.80 ± 0.10	0.66 ± 0.00	18.83 ± 0.18	7.10 ± 0.19
V14_OR_ALL_CALO	21.90 ± 0.20	1.20 ± 0.22	0.66 ± 0.00	19.75 ± 0.47	6.05 ± 0.41

Tagging b-Jets

Single EM Triggers and Luminosity - RunIIA

[from	to[Trigger	Del	Rec	Good
V8.0	V9.0	EM_MX	42.59	33.45	26.66
V9.0	V10.0	EM_MX	47.89	41.78	24.78
V10.0	V11.0	EM_MX	21.44	19.36	10.75
V11.0	V12.0	EM_MX	79.17	74.24	65.78
V12.0	V13.0	E1_SH30	276.90	254.75	230.99
V13.0	V13.3	E1_SH30	82.01	74.15	55.44
V13.3	V14.0	E1_SH30	381.85	350.42	322.83
V14.0	V15.0	E1_SHT25	416.89	388.95	333.74
			1348.74	1237.10	1070.97

EM_MX, EM_HI, EM_MX_SH, EM_HI_SH, EM_MX_EMFR8, EM_HI_EMFR8 - V8-11
E1_L50 E1_L70 E1_NC90 E1_SH30 E1_SHT20 E1_VL70 E2_SH30 E2_SHT20
E3_SH30 E3_SHT20 E4_SH30 E4_SHT20 - V12/V13
2CEM12_E15_SH30 2CEM12_E15_SHT22 2CEM6_E15_SH30 2CEM6_E15_SHT22
E1_ISH30 E1_ISHT22 E1_SH35 E1_SHT25 E3_ISH30 E3_ISHT22 E3_SH35

E3_SHT25 E4_ISH30 E4_ISHT22 E4_SH35 E4_SHT25 - V14

Single Electron Efficiency in Data / MC

PRESELECTION

- EMID = $10, \pm 11$
- Electromagnetic fraction > 0.9
- Calorimeter isolation < 0.2
- H-Matrix(7) < 50
- Spatial track match $\chi^2 \operatorname{prob} > 0$
- Likelihood > 0.85
- $p_{\rm T} > 15 \,{\rm GeV/c}$ TIGHT_TRK

$$E_{em} = \frac{E_{EM}(0.2)}{E_{TOT}(0.4)}$$

$$E_{iso} = \frac{E_{tot}(0.4) - E_{EM}(0.2)}{E_{EM}(0.2)}$$

$$\varepsilon_{\rm pre} = \frac{N_{\rm pass}}{N_{\rm pass} + N_{\rm fail}}$$

- Dielectron invariant mass should be consistent to that of Z boson
 - One of the electrons is required to pass stringent cuts TAG
- The other candidate is required to pass cuts relevant to the efficiency to be determined
- Preselection efficiency is first determined
- All other efficiencies are relative to preselection efficiency
- Efficiencies are calculated per electron rather than per event to avoid bias
 - Each electron that forms the leg of Z boson can be a tag or a probe
- Signal Hypothesis: Voigtian
- Background Hypothesis : Exponential

Single Electron Efficiency – Object ID Results

Background Modeling - Matrix Method for QCD

- Define two samples (loose/ tight) based on likelihood discriminant
 - (N_{loose}, N_{tight}) and N_{tight} \subset N_{loose}
- Measure the electron likelihood efficiency (ϵ_{lk})
 - (Z→ee) tag/probe method
- Measure fake rate (p_{fake})
 - Dijet events with two back to back jets in azimuth
 - No. of Events with atleast 1 fake electron passing likelihood cut (num)
 - No. of Events with atleast 1 fake electron (den)
 - (num/den) = the probability that a jet fakes an electron (p_{fake})
- Obtain the N_e and N_{QCD} by solving the matrix equations
 Real Jet

Estimation of Fake Rate (pfake)

- Look for Dijet events
 - One good jet (JCCB) with
 - pT > 15 GeV/c
 - EMF(jet) < 0.7 (To Reject Zs)
 - # tracks >= 5
 - The other jet is (fake electron)
 - Back to back with the first jet (i.e., $|\Delta \varphi(j,j)| > 2.5$)
 - Passes all em-id cuts except likelihood
 - pT > 15 GeV/c
 - EMF > 0.9
 - ISO < 0.2
 - HMx7(χ²) < 50
 - Is in the central calorimeter region ($|\eta|$ < 1.1)
 - MET in the event < 10 GeV (To reject W+j events)

 For a given likelihood value (e.g,0.2 / 0.85) determine

Fake Rate - Results

Data / Simulation Comparison

Data / Simulation Comparison

Limits on Production of Higgs

- X In the absence of signal, we set limits on Standard Model Higgs boson production
 - ✗ We calculate limits via the CLs prescription:

$$CL_{s} = \frac{CL_{s+b}}{CL_{b}}$$

X Using a Log-Likelihood Ratio test statistic:

$$Q(\vec{s},\vec{b},\vec{d}) = \prod_{i=0}^{N_{Chan}} \prod_{j=0}^{N_{bins}} \frac{(s+b)_{ij}^{d_{ij}} e^{(s+b)_{ij}}}{d_{ij}!} / \frac{b_{ij}^{d_{ij}} e^{b_{ij}}}{d_{ij}!}$$

$$LLR = -2 \times LogQ$$

- Distributions of simulated outcomes are populated via Poisson trial with mean values given by B-only or S+B hypotheses
 - ✗ Systematics are folded in via Gaussian marginalization
 - Correlations held amongst signals and backgrounds

Tools for Limit-setting

- X To counteract the degrading effects of systematic uncertainties, we actually integrate over the Profile Likelihood distributions
 - ✗ Obtained by fitting MC expectations to "data" for each outcome
 - X Capitalizes on shape and statistics of data to constrain background fluctuations
- ✗ Must define the best fit of our MC model to data

x Assume: $B_i \rightarrow B_i \prod_k (1 + \sigma_i^k S_k)$ Where S_k has a mean of 0 and width of 1

x Minimize Poisson estimator by varying S_k values

$$x^{2} = 2 \sum_{i} (B_{i} - D_{i}) - D_{i} \ln \left(\frac{B_{i}}{D_{i}}\right) + \sum_{k} S_{k}^{2}$$

CLs in Pictures

- X Black dashed line: Observed LLR value (LLR_{obs})
- X Green: Bkgd-only hypothesis
 - X CL_b is region to right of LLR_{obs}
 - X Equals ~50% for good bkgd/data agreement
- X Red: Signal+bkgd hypothesis
 - x CL_{s+b} is region to right of LLR_{obs}

W(H) → Ivbb Limits

Where are we at the moment?

WH Search at Tevatron

31

BACK UP SLIDES

W + 2jets Properties (Single EM "OR")

W + 2jets P_T of Jets (Single EM "OR")

W+2jets Properties (Single EM "OR") - Dijet Mass

Event Yield

	W(e) + 2jets	W(e) + 2jets (1 b jet)	W(e) + 2jets (2 b jet)
Data	12333	449	122
Exp. Bkg	12333.00	463.44	119.64
Signal (WH)	3.00 (3.19)	1.01 (1.05)	0.95 (0.99)

Event Yield: Single EM "OR"

Event Yield: EM+JET Trigger (one per suite)

	W(e) + 2jets	W(e) + 2jets	W(e) + 2jets
		(1 b jet)	(2 b jet)
Data	10027	384	100
Exp. Bkg	10027.00	384.40	95.00
Signal (WH)	2.65 (3.19)	0.89 (1.05)	0.84 (0.99)

W Properties - Before Reweighting W-pT

W Properties

→all corrections applied to MC except pT re-weighting

→Disagreement between Data/MC in Pt spectrum (0,50) GeV

→QCD dominates the WTMass region below 40 GeV

Selection Cuts

 $\rightarrow Nj ==2, pT > 20 \text{ GeV}$

→*Mistag rate 0.3/0.03*

→MET > 20 GeV

Method

- Discrepancy b/w Data and MC
 - To study re-weighting, used additional cut
 - WTMass > 50 GeV
 - Major contribution to this discrepancy in pre-tagged samples is due to Wjj
- Define the weighting function: Wt = N / D where
 - N = Data sum of all bkg except for Wjj (MC)
 - D = Wjj (MC)
- Fit Wt with: 0.5 [C + ERF{(pT A)/B√ 2} + D(pT)²]
 - Fit Region of W-Pt (0,150) GeV
 - Similar study was done (Ref: D0 Note 5340)

Results - W-pT Reweighting

Results - W-pT Reweighting

Conclusions/To Do List

"OR" of Calorimeter based triggers for each list with atleast one un-prescaled trigger in each list

- This "OR" is actually an or of All CALO based EM trigger and EM+JET triggers.
 - Average trigger efficiency is ≈95%
 - Signal Efficiency increases by 13% (ST/DT)
 - Luminosity increase: ~10%

TO DO:

- Triangle cut to remove QCD background and improve the $\Delta \phi$ (em,met)
- Optimize Second lepton veto to reduce Z/ttbar contribution

