PHYS 1441 – Section 002 Lecture #2

Wednesday, Jan. 16, 2008 Dr. Jaehoon Yu

- Brief history of physics
- Standards and units
- Uncertainties
- Significant Figures

Announcements

- Reading assignment #1: Read and follow through all sections in appendices C, D and E by Tuesday, Jan. 22
 - There will be a quiz on Wednesday, Jan. 23, on this reading assignment
- E-mail list: 16 of you subscribed to the list so far
 - 5 point extra credit if done by this Friday, Jan. 18
 - 3 point extra credit if done by Wednesday, Jan. 23
- 19 of you have registered for homework roster, of whom 8 submitted homework #1
 - Remember that you need to download and submit homework #1 for full credit!!
 - You need a UT e-ID and password to log-in and download homework
 - If you don't have them request e-id on the web http://www.utexas.edu/eid
- No class next Monday, Jan. 21, Martin Luther King day
 - But homework#1 is still due 9pm that day

Why do Physics?

Exp. To understand nature through experimental observations and measurements (Research)

Theory Establish limited number of fundamental laws, usually with mathematical expressions

Predict the nature's course

- ⇒Theory and Experiment work hand-in-hand
- ⇒Theory works generally under restricted conditions
- ⇒Discrepancies between experimental measurements and theory are good for improvements
- ⇒Improves our everyday lives, though some laws can take a while till we see them amongst us

Models, Theories and Laws

- Models: An analogy or a mental image of a phenomena in terms of something we are familiar with
 - Often provide insights for new experiments and ideas
- Theories: More systematically improved version of models
 - Can provide quantitative predictions that are testable and more precise
- Laws: Certain concise but general statements about how nature behaves → The statement must be found experimentally valid
- Principles: Less general statements of how nature behaves
 - Has some level of arbitrariness

Brief History of Physics

- AD 18th century:
 - Newton's Classical Mechanics: A theory of mechanics based on observations and measurements
- AD 19th Century:
 - Electricity, Magnetism and Thermodynamics
- Late AD 19th and early 20th century (Modern Physics Era)
 - Einstein's theory of relativity: Generalized theory of space, time and energy (mechanics)
 - Discovery of radioactivity
 - Quantum Mechanics: Theory of atomic phenomena
- Physics has come very far, very fast and is still progressing, yet we've got a long way to go
 - What is matter made of?
 - How do matters get mass?
 - How and why do matters interact with each other?
 - How is universe created?

Needs for Standards and Units

- Three basic quantities for physical measurements
 - Length, Mass and Time
- Need a language that everyone can understand each other
 - Consistency is crucial for physical measurements
 - The same quantity measured by one must be comprehendible and reproducible by others
 - Practical matters contribute
- A system of unit called **SI** (*System Internationale*) was established in 1960
 - Length in meters (m)
 - Mass in kilo-grams (kg)
 - <u>Time</u> in seconds (s)

Definition of Base Units

SI Units	Definitions	
1 m (Length) = 100 cm	One meter is the length of the path traveled by light in vacuum during a time interval of 1/299,792,458 of a second.	
1 kg (Mass) = 1000 g	It is equal to the mass of the international prototype of the kilogram, made of platinum-iridium alloy kept in International Bureau of Weights and Measure in France.	
1 s (Time)	One second is the <u>duration of 9,192,631,770</u> <u>periods of the radiation</u> corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 (C ¹³³) atom.	

- There are prefixes that scales the units larger or smaller for convenience (see pg. 7)
- Units for other quantities, such as Kelvins for temperature, for easiness of use

Prefixes, expressions and their meanings

- deca (da): 10¹
- hecto (h): 10²
- kilo (k): 10³
- mega (M): 10⁶
- giga (G): 10⁹
- tera (T): 10¹²
- peta (P): 10¹⁵
- exa (E): 10¹⁸
- zetta (Z): 10²¹
- yotta (Y): 10²⁴

- deci (d): 10⁻¹
- centi (c): 10⁻²
- milli (m): 10⁻³
- micro (µ): 10-6
- nano (n): 10⁻⁹
- pico (p): 10⁻¹²
- femto (f): 10⁻¹⁵
- atto (a): 10⁻¹⁸
- zepto (z): 10-21
- yocto (y): 10-24

International Standard Institutes

- International Bureau of Weights and Measure http://www.bipm.fr/
 - Base unit definitions:http://www.bipm.fr/enus/3_SI/base_units.html
 - Unit Conversions: http://www.bipm.fr/enus/3_SI/
- US National Institute of Standards and Technology (NIST) http://www.nist.gov/

How do we convert quantities from one unit to another?

Unit 1 = Conversion factor X Unit 2

1 inch	2.54	cm
1 inch	0.0254	m
1 inch	2.54x10 ⁻⁵	km
1 ft	30.3	cm
1 ft	0.303	m
1 m	3.281	ft
1 hr	60	minutes
1 hr	3600	seconds
And many	More	Here

Examples for Unit Conversions

world is Angel Falls in Venezuela, with a total drop of 979.0m. Express this drop in feet.

What do we need to know?

Ex 1: The highest waterfall in the world is Angel Falls in Venezuela, with a total drop of 979.0m.

Express this drop in feet.

$$= 979.0m \times \left(\frac{3.281 \, \text{feet}}{1 \, \text{m}}\right)$$

What do we need to know?

 $= 979.0 \times 3.281 \, \text{feet} = 3212 \, \text{feet}$

Ex 2: Express the speed limit 65 miles per hour (mi/h or mph) in terms of meters per second (m/s).

$$1 \text{ mi} = (5280 \text{ ft}) \left(\frac{12 \text{ in}}{1 \text{ ft}}\right) \left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right) \left(\frac{1 \text{ m}}{100 \text{ cm}}\right) = 1609 \text{ m} = 1.609 \text{ km}$$

$$65 \text{ mi/h} = (65 \text{ mi}) \left(\frac{1609 \text{ m}}{1 \text{ mi}}\right) \left(\frac{1}{1 \text{ h}}\right) \left(\frac{1 \text{ h}}{3600 \text{ s}}\right) = 29.1 \text{ m/s}$$

$$100 \text{ ln km/hour?} \quad 65 \text{ mi/h} = (65 \text{ mi}) \left(\frac{1.609 \text{ km}}{1 \text{ mi}}\right) \left(\frac{1}{1 \text{ h}}\right) = 104 \text{ km/h}$$

$$100 \text{ Wednesday, Jan. 16, 2008} \quad 110 \text{ PHYS 1441-002, Spring 2008} \quad 110 \text{ Mednesday}$$

Dr. Jaehoon Yu

Estimates & Order-of-Magnitude Calculations

- Estimate = Approximation
 - Useful for rough calculations to determine the necessity of higher precision
 - Usually done under certain assumptions
 - Might require modification of assumptions, if higher precision is necessary
- Order of magnitude estimate: Estimates done to the precision of 10s or exponents of 10s;
 - Three orders of magnitude: 10³=1,000
 - Round up for Order of magnitude estimate; 8x10⁷ ~ 10⁸
 - Similar terms: "Ball-park-figures", "guesstimates", etc

Uncertainties

 Physical measurements have limited precision, however good they are, due to:

Stat.{ - Number of measurements

Quality of instruments (meter stick vs micro-meter)
 Experience of the person doing measurements
 Etc

 In many cases, uncertainties are more important and difficult to estimate than the central (or mean) values

Significant Figures

- Significant figures denote the precision of the measured value
 - Significant figures: non-zero numbers or zeros that are not place-holders
 - How many significant figures? 34, 34.2, 0.001, 34.001
 - 34 has two significant digits
 - 34.2 has 3
 - 0.001 has one because the 0's before 1 are place holders
 - 34.100 has 5, because the 0's after 1 indicates that the numbers in these digits are indeed 0's.
 - When there are many 0's, use scientific notation:
 - $-31400000=3.14x10^7$
 - $-0.00012=1.2x10^{-4}$

Significant Figures

- Operational rules:
 - Addition or subtraction: Keep the <u>smallest number of</u> <u>decimal place</u> in the result, independent of the number of significant digits: 12.001+ 3.1= 15.1
 - Multiplication or Division: Keep the <u>smallest</u> significant figures in the result: 12.001 x 3.1 = 37, because the smallest significant figures is ?.