PHYS 1441 – Section 002 Lecture #3

Wednesday, Jan. 23, 2008 Dr. <mark>Jae</mark>hoon <mark>Yu</mark>

- Dimensional Analysis
- Trigonometry reminder
- Coordinate system, vector and scalars
- One Dimensional Motion: Average Velocity; Acceleration; Motion under constant acceleration; Free Fall

Dimension and Dimensional Analysis

- An extremely useful concept in solving physical problems
- Good to write physical laws in mathematical expressions
- No matter what units are used the base quantities are the same
 - *Length* (distance) is length whether meter or inch is used to express the size: Usually denoted as [L]
 - The same is true for *Mass ([M])* and *Time ([T])*
 - One can say "Dimension of Length, Mass or Time"
 - Dimensions are used as algebraic quantities: Can perform two algebraic operations; multiplication or division

Dimension and Dimensional Analysis

- One can use dimensions only to check the validity of one's expression: Dimensional analysis
 - Eg: Speed $[v] = [\mathcal{L}]/[\mathcal{T}] = [\mathcal{L}]/[\mathcal{T}^{-1}]$
 - Distance (L) traveled by a car running at the speed V in time T

 $\bullet \mathcal{L} = \mathcal{V}^{\star}\mathcal{T} = [\mathcal{L}/\mathcal{T}]^{\star}[\mathcal{T}] = [\mathcal{L}]$

• More general expression of dimensional analysis is using exponents: eg. $[v] = [\mathcal{L}^n \mathcal{T}^m] = [\mathcal{L}] \{\mathcal{T}^{-1}\}$ where n = 1 and m = -1

Examples

- Show that the expression [v] = [at] is dimensionally correct
 - Speed: [v] =L/T
 - Acceleration: [a] =L/T²
 - Thus, $[at] = (L/T^2)xT = LT^{(-2+1)} = LT^{-1} = L/T = [v]$

•Suppose the acceleration a of a circularly moving particle with speed v and radius r is proportional to r^n and v^m . What are n and m?

Trigonometry Reminders

Definitions of $\sin\theta$, $\cos\theta$ and $\tan\theta$

Example for estimates using trig... Estimate the radius of the Earth using triangulation as shown in the picture when d=4.4km and h=1.5m.

Coordinate Systems

- They make it easy and consistent to express locations or positions
- Two commonly used systems, depending on convenience, are
 - Cartesian (Rectangular) Coordinate System
 - Coordinates are expressed in (x,y)
 - Polar Coordinate System
 - Coordinates are expressed in distance from the origin $^{\mbox{\tiny (P)}}$ and the angle measured from the x-axis, θ (r, θ)
- Vectors become a lot easier to express and compute

Example

Cartesian Coordinate of a point in the xy plane are (x,y) = (-3.50, -2.50)m. Find the equivalent polar coordinates of this point.

$$r = \sqrt{(x^{2} + y^{2})}$$

= $\sqrt{((-3.50)^{2} + (-2.50)^{2})}$
= $\sqrt{18.5} = 4.30(m)$
 $\theta = 180 + \theta_{s}$
 $\tan \theta_{s} = \frac{-2.50}{-3.50} = \frac{5}{7}$
 $\theta_{s} = \tan^{-1}\left(\frac{5}{7}\right) = 35.5^{\circ}$

Wednesday, Jan. 23, 2008

Vector and Scalar

Vector quantities have both magnitudes (sizes) and directions *Force, gravitational acceleration, momentum*

Normally denoted in **BOLD** letters, \mathcal{F} , or a letter with arrow on top $\overrightarrow{\mathcal{F}}$. Their sizes or magnitudes are denoted with normal letters, \mathcal{F} , or absolute values: $|\overrightarrow{\mathcal{F}}|$ or $|\mathcal{F}|$

Scalar quantities have magnitudes only Can be completely specified with a value and its unit Normally denoted in normal letters, \mathcal{E}

Energy, heat, mass, time

Both have units!!!

Properties of Vectors

• Two vectors are the same if their sizes and the directions are the same, no matter where they are on a coordinate system!!

Which ones are the same vectors? **A=B=E=D** Why aren't the others? **C**: The same magnitude but opposite direction: **C=-A**:A negative vector

F: The same direction but different magnitude

Vector Operations

- Addition:
 - Triangular Method: One can add vectors by connecting the head of one vector to the tail of the other (head-to-tail)
 - Parallelogram method: Connect the tails of the two vectors and extend
 - Addition is commutative: Changing order of operation does not affect the results A+B=B+A, A+B+C+D+E=E+C+A+B+D

- Subtraction:
 - The same as adding a negative vector: A B = A + (-B)

Since subtraction is the equivalent to adding a negative vector, subtraction is also commutative!!!

• Multiplication by a scalar is increasing the magnitude A, B=2A Wedne $|\mathcal{B}| = 2|\mathcal{A}|^{38}$ $\mathcal{B} = 2|\mathcal{A}|^$

Example for Vector Addition

A car travels 20.0km due north followed by 35.0km in a direction 60.0° west of north. Find the magnitude and direction of resultant displacement.

$$r = \sqrt{(A + B \cos \theta)^{2} + (B \sin \theta)^{2}}$$

= $\sqrt{A^{2} + B^{2} (\cos^{2} \theta + \sin^{2} \theta) + 2AB \cos \theta}$
= $\sqrt{A^{2} + B^{2} + 2AB \cos \theta}$
= $\sqrt{(20.0)^{2} + (35.0)^{2} + 2 \times 20.0 \times 35.0 \cos 60}$
= $\sqrt{2325} = 48.2(km)$
 $\theta = \tan^{-1} \frac{|\vec{B}| \sin 60}{|\vec{A}| + |\vec{B}| \cos 60}$
= $\tan^{-1} \frac{35.0 \sin 60}{20.0 + 35.0 \cos 60}$
= $\tan^{-1} \frac{30.3}{37.5} = 38.9^{\circ}$ to W wrt N

Ξ

=

Components and Unit Vectors

Coordinate systems are useful in expressing vectors in their components

Wednesday, Jan. 23, 2008

Unit Vectors

- Unit vectors are the ones that tells us the directions of the components
- Dimensionless
- Magnitudes are exactly 1
- Unit vectors are usually expressed in i, j, k or
 i, *j*, *k*

So the vector **A** can be re-written as

$$\vec{A} = A_x \vec{i} + A_y \vec{j} = |\vec{A}| \cos \theta \vec{i} + |\vec{A}| \sin \theta \vec{j}$$

Examples of Vector Operations

Find the resultant vector which is the sum of A=(2.0i+2.0j) and B=(2.0i-4.0j)

$$\vec{C} = \vec{A} + \vec{B} = (2.0\vec{i} + 2.0\vec{j}) + (2.0\vec{i} - 4.0\vec{j})$$

= $(2.0 + 2.0)\vec{i} + (2.0 - 4.0)\vec{j} = 4.0\vec{i} - 2.0\vec{j}(m)$
 $|\vec{C}| = \sqrt{(4.0)^2 + (-2.0)^2}$
= $\sqrt{16 + 4.0} = \sqrt{20} = 4.5(m)$ $\vec{\theta} = \tan^{-1}\frac{C_y}{C_x} = \tan^{-1}\frac{-2.0}{4.0} = -27^\circ$

Find the resultant displacement of three consecutive displacements: $d_1=(15i+30j+12k)$ cm, $d_2=(23i+14j-5.0k)$ cm, and $d_3=(-13i+15j)$ cm

$$\vec{D} = \vec{d}_1 + \vec{d}_2 + \vec{d}_3 = \left(15\vec{i} + 30\vec{j} + 12\vec{k}\right) + \left(23\vec{i} + 14\vec{j} - 5.0\vec{k}\right) + \left(-13\vec{i} + 15\vec{j}\right)$$
$$= \left(15 + 23 - 13\right)\vec{i} + \left(30 + 14 + 15\right)\vec{j} + \left(12 - 5.0\right)\vec{k} = 25\vec{i} + 59\vec{j} + 7.0\vec{k}(cm)$$

Magnitude
$$\left| \vec{D} \right| = \sqrt{(25)^2 + (59)^2 + (7.0)^2} = 65(cm)$$

Wednesday, Jan. 23, 2008

