PHYS 1441 – Section 002 Lecture #4

Monday, Jan. 28, 2008 Dr. <mark>Jae</mark>hoon **Yu**

- Some Fundamentals
- One Dimensional Motion
- Displacement
- Speed and Velocity
- Acceleration
- Motion under constant acceleration

Homework #2 is due 9pm, next Monday, Feb. 4!!

Announcements

- E-mail distribution list: 30 of you subscribed to the list so far
 - 3 point extra credit if done by midnight Wednesday, Jan. 30
 - I will send out a test message Thursday evening
 - Need your confirmation reply \rightarrow Just to me not to all class please....
- 40 of you have registered to homework roster, of whom 40 submitted homework #1
 - Excellent!!
- Physics Department colloquium schedule at
 - <u>http://www.uta.edu/physics/main/phys_news/colloquia/2008/Spring2008.html</u>
- Quiz results
 - Average: 4.9/11
 - Equivalent to 40/100
 - Top score: 11/11
- Exam dates
 - 1st Term: Wednesday, Feb. 20
 - 2nd Term: Wednesday, Mar. 26
 - 3rd Term: Monday, Apr. 21
 - Final comprehensive: Monday, May 5

Some Fundamentals

- <u>Kinematics</u>: Description of Motion without understanding the cause of the motion
- <u>Dynamics</u>: Description of motion accompanied with understanding the cause of the motion
- Vector and Scalar quantities:
 - <u>Scalar</u>: Physical quantities that require magnitude but no direction
 - Speed, length, mass, height, volume, area, magnitude of a vector quantity, etc
 - <u>Vector</u>: Physical quantities that require both magnitude and direction
 - Velocity, Acceleration, Force, Momentum
 - It does not make sense to say "I ran with velocity of 10miles/hour."
- Objects can be treated as point-like if their sizes are smaller than the scale in the problem
 - Earth can be treated as a point like object (or a particle) in celestial problems
 - Simplification of the problem (The first step in setting up to solve a problem...)
 - Any other examples?

Some More Fundamentals

- <u>Motions</u>: Can be described as long as the position is known at any time (or position is expressed as a function of time)
 - Translation: Linear motion along a line
 - Rotation: Circular or elliptical motion
 - Vibration: Oscillation
- Dimensions
 - 0 dimension: A point
 - 1 dimension: Linear drag of a point, resulting in a line →
 Motion in one-dimension is a motion on a straight line
 - 2 dimension: Linear drag of a line resulting in a surface
 - 3 dimension: Perpendicular Linear drag of a surface, resulting in a stereo object

Displacement, Velocity and Speed One dimensional displacement is defined as: $\Delta x \equiv x_f - x_i$ A vector quantity Displacement is the difference between initial and final potions of the motion and is a vector quantity. How is this different than distance? Unit? m The average velocity is defined as: $v_x \equiv \frac{x_f - x_i}{x_f} = \frac{\Delta x}{\Delta x} \equiv \frac{\text{Displacement}}{1 + 10}$ Unit? **m**/s A vector quantity $t_f - t_i \Delta t$ Elapsed Time Displacement per unit time in the period throughout the motion The average speed is defined as: $v \equiv \frac{\text{Total Distance Traveled}}{2}$ Total Elapsed Time Unit? m/s A scalar quantity

What is the displacement?

$$\Delta x = x_2 - x_1$$

How much is the elapsed time? $\Delta t = t - t_0$

Displacement, Velocity and Speed One dimensional displacement is defined as:

 $\Delta x \equiv x_f - x_i$

Displacement is the difference between initial and final potions of the motion and is a vector quantity. How is this different than distance? Unit? m The average velocity is defined as: $v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t} \equiv \frac{\text{Displacement}}{\text{Elapsed Time}}$ Unit? m/s Displacement per unit time in the period throughout the motion

The average speed is defined as: Unit? m/s $v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Elapsed Time}}$ Can someone tell me what the difference between speed and velocity is?

Difference between Speed and Velocity

• Let's take a simple one dimensional translation that has many steps:

Let's call this line X-axis

Dr. Jaehoon Yu

Example 1 Distance Run by a Jogger How far does a jogger run in 1.5 hours (5400 s) if his average speed is 2.22 m/s?

Average speed = $\frac{\text{Distance}}{\text{Elapsed time}}$

Distance = (Average speed) (Elapsed time) = (2.22 m/s)(5400 s) = 12000 m

Example 2 The World's Fastest Jet-Engine Car Andy Green in the car *ThrustSSC* set a world record of 341.1 m/s in 1997. To establish such a record, the driver makes two runs through the course, one in each direction to nullify wind effects. From the data, determine the average velocity for each run.

Example for displacement, velocity and speed

The position of a runner as a function of time is plotted as moving along the x axis of a coordinate system. During a 3.00-s time interval, the runner's position changes from x_1 =50.0m to x_2 =30.5 m, as shown in the figure. What was the runner's average velocity? What was the average speed?

Instantaneous Velocity and Speed

- Can average quantities tell you the detailed story of the whole motion?
- Instantaneous velocity is defined as:
 - What does this mean?

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

- Displacement in an infinitesimal time interval
- Velocity at any given moment

 Instantaneous speed is the size (magnitude) of the velocity vector: Speed at any given moment

$$|v_x| = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

*Magnitude of Vectors are expressed in absolute values

Position vs Time Plot

Example

A jet engine moves along a track. Its position as a function of time is given by the equation $\chi = At^2 + B$ where A=2.10m/s² and B=2.80m.

(a) Determine the displacement of the engine during the interval from $t_1=3.00s$ to $t_2=5.00s$. $x_1 = x_{t_1=3.00} = 2.10 \times (3.00)^2 + 2.80 = 21.7m$ $x_2 = x_{t_2=5.00} = 2.10 \times (5.00)^2 + 2.80 = 55.3m$

Displacement is, therefore:

$$\Delta x = x_2 - x_1 = 55.3 - 21.7 = +33.6(m)$$

(b) Determine the average velocity during this time interval.

$$\overline{v}_x = \frac{\Delta x}{\Delta t} = \frac{33.6}{5.00 - 3.00} = \frac{33.6}{2.00} = 16.8 (m/s)$$

Displacement, Velocity and Speed

Displacement

Average velocity

$$\Delta x \equiv x_f - x_i$$

$$v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$$

Total Distance Traveled $v \equiv -$ **Total Time Spent**

Instantaneous velocity

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

Instantaneous speed

