Today’s homework is HW #9, due 9pm, Tuesday, Apr. 14!!
Reminder: Special Project

1. A ball of mass M at rest is dropped from the height h above the ground onto a spring on the ground, whose spring constant is k. Neglecting air resistance and assuming that the spring is in its equilibrium, express, in terms of the quantities given in this problem and the gravitational acceleration g, the distance x of which the spring is pressed down when the ball completely loses its energy. (10 points)

2. Find the x above if the ball’s initial speed is v_i. (10 points)

3. Due for the project is Wednesday, April 8.

4. You must show the detail of your OWN work in order to obtain any credit.
Power

• Rate at which the work is done or the energy is transferred
 – What is the difference for the same car with two different engines (4 cylinder and 8 cylinder) climbing the same hill?
 – The time... 8 cylinder car climbs up the hill faster!

Is the total amount of work done by the engines different? NO
Then what is different? The rate at which the same amount of work performed is higher for 8 cylinders than 4.

Average power

\[\bar{P} \equiv \frac{\Delta W}{\Delta t} = \frac{Fs}{\Delta t} = F \frac{s}{\Delta t} = F \bar{v} \]

Scalar quantity

Unit?

\[\frac{J}{s} = \text{Watts} \]

1 HP \equiv 746 Watts

What do power companies sell?

\[1kWH = 1000Watts \times 3600s = 3.6 \times 10^6 J \]

Energy
Energy Loss in Automobile

Automobile uses only 13% of its fuel to propel the vehicle.

Why?
67% in the engine:
- Incomplete burning
- Heat
- Sound

16% in friction in mechanical parts
4% in operating other crucial parts such as oil and fuel pumps, etc

13% used for balancing energy loss related to moving the vehicle, like air resistance and road friction to tire, etc

Two frictional forces involved in moving vehicles

Coefficient of Rolling Friction; \(\mu = 0.016 \)

Air Drag

\[
f_a = \frac{1}{2} D \rho A v^2 = \frac{1}{2} \times 0.5 \times 1.293 \times 2v^2 = 0.647v^2
\]

Total power to keep speed \(v = 26.8 \text{m/s} = 60 \text{mi/h} \)

Power to overcome each component of resistance

Total Resistance

\[
f_t = f_r + f_a
\]

\[
P = f_t v = (691 \text{N}) \cdot 26.8 = 18.5 kW
\]

\[
P_r = f_r v = (227) \cdot 26.8 = 6.08 kW
\]

\[
P_a = f_a v = (464.7) \cdot 26.8 = 12.5 kW
\]

\[
m_{car} = 1450 \text{kg} \quad \text{Weight} = mg = 14200 \text{N}
\]

\[
\mu n = \mu mg = 227 \text{N}
\]

Monday, Apr. 6, 2009

PHYS 1441-002, Spring 2009

Jaehoon Yu
Human Metabolic Rates

<table>
<thead>
<tr>
<th>Activity</th>
<th>Rate (watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running (15 km/h)</td>
<td>1340 W</td>
</tr>
<tr>
<td>Skiing</td>
<td>1050 W</td>
</tr>
<tr>
<td>Biking</td>
<td>530 W</td>
</tr>
<tr>
<td>Walking (5 km/h)</td>
<td>280 W</td>
</tr>
<tr>
<td>Sleeping</td>
<td>77 W</td>
</tr>
</tbody>
</table>

aFor a young 70-kg male.
Ex. The Power to Accelerate a Car

A 1.10x10^3 kg car, starting from rest, accelerates for 5.00 s. The magnitude of the acceleration is \(a = 4.60 \text{ m/s}^2 \). Determine the average power generated by the net force that accelerates the vehicle.

What is the force that accelerates the car?

\[
F = ma = \left(1.10 \times 10^3 \right) \cdot \left(4.60 \text{ m/s}^2 \right) = 5060 \text{ N}
\]

Since the acceleration is constant, we obtain

\[
\bar{v} = \frac{v_0 + v_f}{2} = \frac{0 + v_f}{2} = \frac{v_f}{2}
\]

From the kinematic formula

\[
v_f = v_0 + at = 0 + \left(4.60 \text{ m/s}^2 \right) \cdot (5.00 \text{ s}) = 23.0 \text{ m/s}
\]

Thus, the average speed is

\[
\frac{v_f}{2} = \frac{23.0}{2} = 11.5 \text{ m/s}
\]

And, the average power is

\[
\bar{P} = F\bar{v} = \left(5060 \text{ N} \right) \cdot \left(11.5 \text{ m/s} \right) = 5.82 \times 10^4 \text{ W}
\]

\[= 78.0 \text{ hp} \]
Linear Momentum

The principle of energy conservation can be used to solve problems that are harder to solve just using Newton’s laws. It is used to describe motion of an object or a system of objects.

A new concept of linear momentum can also be used to solve physical problems, especially the problems involving collisions of objects.

Linear momentum of an object whose mass is \(m \) and is moving at a velocity of \(\vec{v} \) is defined as

\[
\vec{p} ≡ m \vec{v}
\]

What can you tell from this definition about momentum?

1. Momentum is a vector quantity.
2. The heavier the object the higher the momentum
3. The higher the velocity the higher the momentum
4. Its unit is \(\text{kg.m/s} \)

What else can use see from the definition? Do you see force?

The change of momentum in a given time interval

\[
\frac{\Delta \vec{p}}{\Delta t} = \frac{m \vec{v} - m \vec{v}_0}{\Delta t} = m \left(\frac{\vec{v} - \vec{v}_0}{\Delta t} \right) = m \frac{\Delta \vec{v}}{\Delta t} = m \ddot{a} = \sum \vec{F}
\]
There are many situations when the force on an object is not constant.
Impulse and Linear Momentum

Net force causes change of momentum \(\Rightarrow \) Newton’s second law

\[\vec{F} = \frac{\Delta \vec{p}}{\Delta t} \quad \Rightarrow \quad \Delta \vec{p} = \vec{F} \Delta t \]

The quantity impulse is defined as the change of momentum

\[\vec{J} = \Delta \vec{p} = \vec{p}_f - \vec{p}_i = m\vec{v}_f - m\vec{v}_0 \]

So what do you think an impulse is?

Effect of the force \(\vec{F} \) acting on an object over the time interval \(\Delta t = t_f - t_i \) is equal to the change of the momentum of the object caused by that force. Impulse is the degree of which an external force changes an object’s momentum.

The above statement is called the impulse-momentum theorem and is equivalent to Newton’s second law.

What are the dimension and unit of Impulse?
What is the direction of an impulse vector?
Defining a time-averaged force
Impulse can be rewritten
If force is constant

\[\vec{F} = \frac{1}{\Delta t} \sum_i \vec{F}_i \Delta t \]

\[\vec{J} = \vec{F} \Delta t \]

\[\vec{J} = \vec{F} \Delta t \]

Impulse is a vector quantity!!
Ball Hit by a Bat

\[\vec{a} = \frac{\vec{V}_f - \vec{V}_o}{\Delta t} \]

\[\sum \vec{F} = m \vec{a} \]

\[\sum \vec{F} = \frac{m\vec{V}_f - m\vec{V}_o}{\Delta t} \]

Multiply either side by \(\Delta t \)

\[\left(\sum \vec{F} \right) \Delta t = m\vec{V}_f - m\vec{V}_o = \vec{J} \]
A baseball (m=0.14kg) has an initial velocity of \(v_0=-38\text{m/s}\) as it approaches a bat. We have chosen the direction of approach as the negative direction. The bat applies an average force \(F\) that is much larger than the weight of the ball, and the ball departs from the bat with a final velocity of \(v_f=+58\text{m/s}\). (a) determine the impulse applied to the ball by the bat. (b) Assuming that the time of contact is \(\Delta t=1.6\times10^{-3}\text{s}\), find the average force exerted on the ball by the bat.

What are the forces involved in this motion? The force by the bat and the force by the gravity. Since the force by the bat is much greater than the weight, we ignore the ball’s weight.

(a) Using the impulse-momentum theorem
\[
\vec{J} = \Delta \vec{p} = m \vec{v}_f - m \vec{v}_0
\]
\[
= 0.14 \times 58 - 0.14 \times (-38) = +13.4 \text{kg} \cdot \text{m/s}
\]

(b) Since the impulse is known and the time during which the contact occurs are know, we can compute the average force exerted on the ball during the contact
\[
\vec{J} = \vec{F} \Delta t \quad \Rightarrow \quad \frac{\vec{J}}{\Delta t} = \frac{+13.4}{1.6 \times 10^{-3}} = +8400 \text{N}
\]

How large is this force?
\[
|\vec{W}| = mg = 0.14 \cdot 9.8 = 1.37 \text{N}
\]
\[
|\vec{F}| = \frac{8400}{1.37} |\vec{W}| = 6131 |\vec{W}|
\]
Example 7.6 for Impulse

(a) Calculate the impulse experienced when a 70 kg person lands on firm ground after jumping from a height of 3.0 m. Then estimate the average force exerted on the person’s feet by the ground, if the landing is (b) stiff-legged and (c) with bent legs. In the former case, assume the body moves 1.0 cm during the impact, and in the second case, when the legs are bent, about 50 cm.

We don’t know the force. How do we do this?

Obtain velocity of the person before striking the ground.

\[KE = -\Delta PE = \frac{1}{2}mv^2 = -mg(y - y_i) = mgy_i \]

Solving the above for velocity \(v \), we obtain

\[v = \sqrt{2gy_i} = \sqrt{2 \cdot 9.8 \cdot 3} = 7.7 \text{ m/s} \]

Then as the person strikes the ground, the momentum becomes 0 quickly giving the impulse

\[\vec{I} = \vec{F}\Delta t = \Delta \vec{p} = \vec{p}_f - \vec{p}_i = 0 - mv = -70 \text{ kg} \cdot 7.7 \text{ m/s} \cdot \hat{j} = -540 \text{ N} \cdot \text{s} \]
Example 7.6 cont’d

In coming to rest, the body decelerates from 7.7 m/s to 0 m/s in a distance \(d = 1.0 \text{cm} = 0.01 \text{m} \).

The average speed during this period is

\[
\bar{v} = \frac{0 + v_i}{2} = \frac{7.7}{2} = 3.8 \text{ m/s}
\]

The time period the collision lasts is

\[
\Delta t = \frac{d}{\bar{v}} = \frac{0.01 \text{m}}{3.8 \text{ m/s}} = 2.6 \times 10^{-3} \text{s}
\]

Since the magnitude of impulse is

\[
|I| = |\bar{F} \Delta t| = 540 \text{ N} \cdot \text{s}
\]

The average force on the feet during this landing is

\[
\bar{F} = \frac{I}{\Delta t} = \frac{540}{2.6 \times 10^{-3}} = 2.1 \times 10^5 \text{ N}
\]

How large is this average force?

Weight = 70 kg \cdot 9.8 \text{ m/s}^2 = 6.9 \times 10^2 \text{ N}

\[
\bar{F} = 2.1 \times 10^5 \text{ N} = 304 \times 6.9 \times 10^2 \text{ N} = 304 \times \text{Weight}
\]

If landed in stiff legged, the feet must sustain 300 times the body weight. The person will likely break his leg.

For bent legged landing:

\[
\Delta t = \frac{d}{\bar{v}} = \frac{0.50 \text{m}}{3.8 \text{ m/s}} = 0.13 \text{s}
\]

\[
\bar{F} = \frac{540}{0.13} = 4.1 \times 10^3 \text{ N} = 5.9 \text{Weight}
\]