PHYS 1441 – Section 002
Lecture #20

Monday, Apr. 27, 2009
Dr. Jaehoon Yu

• Torque and Angular Acceleration
• Work, Power and Energy in Rotation
• Rotational Kinetic Energy
• Angular Momentum & Its Conservation
• Conditions for Equilibrium & Mechanical Equilibrium
• A Few Examples of Mechanical Equilibrium

Today’s homework is HW #11, due 9pm, Wednesday, May 6!!

Announcements

• Term exam resolution
 – There will be another exam for those of you who wants to take in the class 1 – 2:20pm this Wednesday, Apr. 25
 • You are welcome to take it again but
 – If you take this exam despite the fact you took last Wednesday, the grade from this exam will replace the one from last Wednesday’s
 – It will cover the same chapters and will be at the same level of difficulties
 – The policy of one better of the two term exams will be used for final grading will still be valid

• The final exam
 – Date and time: 11am – 12:30pm, Monday, May 11
 – Comprehensive exam
 – Covers: Ch 1.1 – What we finish next Monday, May 4
 – There will be a help session Wednesday, May 6, during the class
Torque & Angular Acceleration

Let's consider a point object with mass m rotating on a circle.

What forces do you see in this motion?

The tangential force F_t and the radial force F_r

The tangential force F_t is $F_t = ma_t = mr\alpha$

The torque due to tangential force F_t is $\tau = F_tr = ma_tr = mr^2\alpha = I\alpha$

What do you see from the above relationship?

What does this mean?
Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship?
Analogs to Newton's 2nd law of motion in rotation.

How about a rigid object?

The external tangential force dF_t is $\delta F_t = \delta ma_t = \delta mr\alpha$

The torque due to tangential force F_t is $\delta \tau = \delta F_tr = (r^2d)m\alpha$

The total torque is $\sum \delta \tau = \sum \delta m\alpha = I\alpha$

What is the contribution due to radial force and why?

Contribution from radial force is 0, because its line of action passes through the pivoting point, making the moment arm 0.

Ex. 12 Hosting a Crate

The combined moment of inertia of the dual pulley is 50.0 kg m2.
The crate weighs 4420 N. A tension of 2150 N is maintained in the cable attached to the motor.
Find the angular acceleration of the dual pulley,

$$\sum F_y = T_2 - mg = ma_y$$

$$T_2 = mg + ma_y$$

$$\sum \tau = T_1\ell_1 - T_2\ell_2 = \tau$$

$$T_1\ell_1 - (mg + ma_y)\ell_2 = I\alpha$$

since $a_y = \ell_2\alpha$

Solve for α:

$$\alpha = \frac{T_1\ell_1 - mg\ell_2}{I + m\ell_2^2} = \frac{(2150 \text{ N})(0.600 \text{ m}) - (451 \text{ kg})(9.80 \text{ m/s}^2)(0.200 \text{ m})}{46.0 \text{ kg} \cdot \text{m}^2 + (451 \text{ kg})(0.200 \text{ m})^2} = 6.3 \text{ rad/s}^2$$
Work, Power, and Energy in Rotation

Let’s consider the motion of a rigid body with a single external force \mathbf{F} exerting tangentially, moving the object by s.

The rotational work done by the force \mathbf{F} as the object rotates through the distance $s=r\theta$ is

$$W = F_s = Fr\theta$$

Since the magnitude of torque is $r\mathbf{F}$, $W = Fr\theta = r\theta$

What is the unit of the rotational work? J (Joules)

The rate of work, or power, of the constant torque t becomes

$$P = \frac{\Delta W}{\Delta t} = t \frac{\Delta \theta}{\Delta t} = t\omega$$

How was the power defined in linear motion?

What is the unit of the rotational power? J/s or W (watts)

Rotational Kinetic Energy

What do you think the kinetic energy of a rigid object that is undergoing a circular motion is?

Kinetic energy of a masslet, m_i, $K_i = \frac{1}{2}m_iv_i^2 = \frac{1}{2}mr_i^2\omega^2$

Since a rigid body is a collection of masslets, the total kinetic energy of the rigid object is

$$KE_R = \sum_i K_i = \frac{1}{2} \sum_i m_ir_i^2\omega^2 = \frac{1}{2} \left(\sum_i m_ir_i^2 \right)\omega^2$$

Since moment of Inertia, I, is defined as

$$I = \sum_i m_ir_i^2$$

The above expression is simplified as

$$KE_R = \frac{1}{2}I\omega^2$$

Unit? J
Ex. Rolling Cylinders

A thin-walled hollow cylinder (mass = m_h, radius = r_h) and a solid cylinder (mass = m_s, radius = r_s) start from rest at the top of an incline. Determine which cylinder has the greatest translational speed upon reaching the bottom.

Total Mechanical Energy = KE + KE_{R} + PE

$$ E = \frac{1}{2} m v_f^2 + \frac{1}{2} I \omega_f^2 + mgh $$

From Energy Conservation

$$ \frac{1}{2} m v_f^2 + \frac{1}{2} I \omega_f^2 + mgh = \frac{1}{2} m v_i^2 + \frac{1}{2} I \omega_i^2 + mgh $$

$$ \frac{1}{2} m v_f^2 + \frac{1}{2} I \omega_f^2 = mgh $$

Solve for v_f

$$ v_f = \sqrt{\frac{2mgh}{m + \frac{I}{r^2}}} $$

What does this tell you?

The cylinder with the smaller moment of inertia will have a greater final translational speed.

The final speeds of the cylinders are

$$ v_f^h = \sqrt{\frac{2mgh}{m + \frac{I_h}{r_h^2}}} $$

$$ v_f^s = \sqrt{\frac{2mgh}{m + \frac{I_s}{r_s^2}}} $$

Monday, Apr. 27, 2009

Kinetic Energy of a Rolling Sphere

Let’s consider a sphere with radius R rolling down the hill without slipping.

$$ K = \frac{1}{2} I_{CM} \omega^2 + \frac{1}{2} MR^2 \omega^2 $$

$$ = \frac{1}{2} I_{CM} \left(\frac{v_{CM}}{R} \right)^2 + \frac{1}{2} Mv_{CM}^2 $$

$$ = \frac{1}{2} \left(\frac{I_{CM}}{R^2 + M} \right) v_{CM}^2 $$

Since $v_{CM} = R\omega$

What is the speed of the CM in terms of known quantities and how do you find this out?

Since the kinetic energy at the bottom of the hill must be equal to the potential energy at the top of the hill

$$ K = \frac{1}{2} \left(\frac{I_{CM}}{R^2 + M} \right) v_{CM}^2 = Mgh $$

$$ v_{CM} = \sqrt{\frac{2gh}{1 + I_{CM} / MR^2}} $$
Example for Rolling Kinetic Energy

For solid sphere as shown in the figure, calculate the linear speed of the CM at the bottom of the hill and the magnitude of linear acceleration of the CM. Solve this problem using Newton’s second law, the dynamic method.

What are the forces involved in this motion?

Gravitational Force, Frictional Force, Normal Force

Newton’s second law applied to the CM gives

\[
\begin{align*}
\sum F_x &= Mgsin \theta - f = Ma_{CM} \\
\sum F_y &= n - Mgcos \theta = 0
\end{align*}
\]

Since the forces \(Mg\) and \(n\) go through the CM, their moment arm is 0 and do not contribute to torque, while the static friction \(f\) causes torque \(\tau_{CM} = f \cdot h = I_{CM} \alpha\)

We know that

\[I_{CM} = \frac{2}{5} MR^2\]

\[a_{CM} = Ra\]

Substituting \(f\) in dynamic equations

\[Mgsin \theta = \frac{7}{5} Ma_{CM}\]

\[a_{CM} = \frac{5}{7} g \sin \theta\]

Angular Momentum of a Particle

If you grab onto a pole while running, your body will rotate about the pole, gaining angular momentum. We’ve used the linear momentum to solve physical problems with linear motions, the angular momentum will do the same for rotational motions.

Let’s consider a point-like object (particle) with mass \(m\) located at the vector location \(r\) and moving with linear velocity \(v\)

The angular momentum \(L\) of this particle relative to the origin \(O\) is

\[L \equiv r \times p\]

What is the unit and dimension of angular momentum? \(kg \cdot m^2/s \cdot [M^2T^{-1}]\)

Note that \(L\) depends on origin \(O\). Why? Because \(r\) changes

What else do you learn? The direction of \(L\) is +\(z\)

Since \(p\) is \(mv\), the magnitude of \(L\) becomes

\[L = mvr = mr^2\omega = I\omega\]

What do you learn from this? If the direction of linear velocity points to the origin of rotation, the particle does not have any angular momentum.

If the linear velocity is perpendicular to position vector, the particle moves exactly the same way as a point on a rim.
Conservation of Angular Momentum

Remember under what condition the linear momentum is conserved?

Linear momentum is conserved when the net external force is 0.
\[\sum \vec{F} = 0 = \frac{\Delta \vec{p}}{\Delta t} \]
\[\vec{p} = \text{const} \]

By the same token, the angular momentum of a system is constant in both magnitude and direction, if the resultant external torque acting on the system is 0.
\[\sum \vec{\tau}_{\text{ext}} = \frac{\Delta \vec{L}}{\Delta t} = 0 \]
\[\vec{L} = \text{const} \]

What does this mean?
Angular momentum of the system before and after a certain change is the same.
\[\vec{L}_i = \vec{L}_f = \text{constant} \]

Three important conservation laws for isolated system that does not get affected by external forces

\[K_i + U_i = K_f + U_f \]
\[\vec{p}_i = \vec{p}_f \]
\[\vec{L}_i = \vec{L}_f \]

Example for Angular Momentum Conservation

A star rotates with a period of 30 days about an axis through its center. After the star undergoes a supernova explosion, the stellar core, which had a radius of 1.0 \times 10^4 \text{ km}, collapses into a neutron star of radius 3.0 km. Determine the period of rotation of the neutron star.

What is your guess about the answer?
The period will be significantly shorter, because its radius got smaller.

Let’s make some assumptions:
1. There is no external torque acting on it
2. The shape remains spherical
3. Its mass remains constant

Using angular momentum conservation
\[L_i = L_f \]
\[I_i \omega_i = I_f \omega_f \]

The angular speed of the star with the period T is
\[\omega = \frac{2\pi}{T} \]

Thus
\[\omega_f = \frac{I_i \omega_i}{I_f} = \frac{mr_i^2}{mr_f^2} \omega_f \]
\[T_f = \frac{2\pi}{\omega_f} = \left(\frac{r_f^2}{r_i^2} \right) T_i = \left(\frac{3.0}{1.0 \times 10^4} \right)^2 \times 30 \text{ days} = 2.7 \times 10^{-6} \text{ days} = 0.23 \text{ s} \]
Ex. A Spinning Skater

An ice skater is spinning with both arms and a leg outstretched. She pulls her arms and leg inward and her spinning motion changes dramatically. Use the principle of conservation of angular momentum to explain how and why her spinning motion changes.

The system of the ice skater does not have any net external torque applied to her. Therefore the angular momentum is conserved for her system. By pulling her arm inward, she reduces the moment of inertia ($\text{Sm}r^2$) and thus in order to keep the angular momentum the same, her angular speed has to increase.

Ex. 15 A Satellite in an Elliptical Orbit

A satellite is placed in an elliptical orbit about the earth. Its point of closest approach is 8.37×10^6 m from the center of the earth, and its point of greatest distance is 25.1×10^6 m from the center of the earth. The speed of the satellite at the perigee is 8450 m/s. Find the speed at the apogee.

Angular momentum is $L = I \omega$

From angular momentum conservation $I_A \omega_A = I_P \omega_P$

Since $I = mr^2$ and $\omega = v/r$

$$p_A r_A^2 \frac{v_A}{r_A} = p_P r_P^2 \frac{v_P}{r_P}$$

$r_A v_A = r_P v_P$

Solve for v_A

$$v_A = \frac{r_P v_P}{r_A} = \frac{(8.37 \times 10^6 \text{ m})(8450 \text{ m/s})}{25.1 \times 10^6 \text{ m}} = 2820 \text{ m/s}$$
Similarity Between Linear and Rotational Motions

All physical quantities in linear and rotational motions show striking similarity.

<table>
<thead>
<tr>
<th>Quantities</th>
<th>Linear</th>
<th>Rotational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>Mass</td>
<td>Moment of Inertia</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>$I = mr^2$</td>
</tr>
<tr>
<td>Length of motion</td>
<td>Distance</td>
<td>Angle Θ (Radian)</td>
</tr>
<tr>
<td>Speed</td>
<td>$v = \frac{\Delta r}{\Delta t}$</td>
<td>$\omega = \frac{\Delta \Theta}{\Delta t}$</td>
</tr>
<tr>
<td>Acceleration</td>
<td>$a = \frac{\Delta v}{\Delta t}$</td>
<td>$\alpha = \frac{\Delta \omega}{\Delta t}$</td>
</tr>
<tr>
<td>Force</td>
<td>Force $\vec{F} = ma$</td>
<td>Torque $\tau = I \alpha$</td>
</tr>
<tr>
<td>Work</td>
<td>Work $\vec{W} = \vec{F} \cdot \vec{d}$</td>
<td>Work $\vec{W} = \tau \Theta$</td>
</tr>
<tr>
<td>Power</td>
<td>$P = \vec{F} \cdot \vec{v}$</td>
<td>$P = \tau \omega$</td>
</tr>
<tr>
<td>Momentum</td>
<td>$\vec{p} = m\vec{v}$</td>
<td>$\vec{L} = I \omega$</td>
</tr>
<tr>
<td>Kinetic Energy</td>
<td>Kinetic $K = \frac{1}{2}mv^2$</td>
<td>Rotational $K_x = \frac{1}{2}I\omega^2$</td>
</tr>
</tbody>
</table>

A thought problem

Consider two cylinders – one hollow (mass m_h and radius r_h) and the other solid (mass m_s and radius r_s) – on top of an inclined surface of height h_0 as shown in the figure. Show **mathematically** how their final speeds at the bottom of the hill compare in the following cases:

1. Totally frictionless surface
2. With some friction but no energy loss due to the friction
3. With energy loss due to kinetic friction

- **Moment of Inertia**
 - Hollow cylinder: $I_h = mr_h^2$
 - Solid Cylinder: $I_s = \frac{1}{2}mr_s^2$