PHYS 1443 – Section 001 Lecture #4

Monday, January 31, 2011 Dr. **Jae**hoon **Yu**

- 1D Motion under constant acceleration
- Free Fall
- Coordinate System
- Vectors and Scalars
- Motion in Two Dimensions
 - Motion under constant acceleration
 - Projectile Motion
 - Maximum ranges and heights

Today's homework is homework #3, due 10pm, Tuesday, Feb. 8!!

Announcements

- 53 out of 60 subscribed to e-mail list
 - Very important communication tool. Please subscribe to it ASAP.
- Quiz results
 - Class Average: 7.3/12
 - Equivalent to 60.8/100
 - Top score: 11.6/12
 - Not bad
- The first term exam is to be on Monday, Feb. 7
 - Time: 1 2:20pm
 - Will cover CH1 what we finish this Wednesday, Feb. 3 + Appendices A and B
 - Mixture of multiple choices and free response problems
- No Department colloquium this week!

Reminder: Special Problems for Extra Credit

- Derive the quadratic equation for Bx²-Cx+A=0
 → 5 points
- Derive the kinematic equation $v_{xf}^2 = v_{xi}^2 + 2a_x(x_f x_i)$ from first principles and the known kinematic equations \rightarrow 10 points
- You must <u>show your work in detail</u> to obtain full credit
- Due at the start of the class, Monday, Feb. 7

Displacement, Velocity, Speed & Acceleration

Displacement

Average velocity

Average speed

Instantaneous velocity

Instantaneous speed

Average acceleration

Instantaneous acceleration Monday, Jan. 31, 2011

$$\Delta x \equiv x_f - x_i$$

$$v_x \equiv \frac{x_f - x_i}{t_f - t_i} \equiv \frac{\Delta x}{\Delta t}$$

$$v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Time Spent}}$$

$$v_x = \underbrace{\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}}_{\Delta t} = \frac{dx}{dt}$$

$$v_x = \underbrace{\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}}_{\Delta t} = \frac{dx}{dt}$$

$$a_x \equiv \frac{v_{xf} - v_{xi}}{t_f - t_i} = \frac{\Delta v_x}{\Delta t}$$

$$a_x \equiv \underbrace{\lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t}}_{\Delta t} = \frac{dv_x}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2 x}{4dt^2}$$

One Dimensional Motion

- Let's focus on the simplest case: <u>acceleration is a constant</u> $(a=a_0)$
- Using the definitions of average acceleration and velocity, we can derive equations of motion (description of motion, velocity and position as a function of time)

$$\overline{a}_{x} = a_{x} = \frac{v_{xf} - v_{xi}}{t_{f} - t_{i}} \quad (\text{If } t_{f} = t \text{ and } t_{i} = 0) \quad a_{x} = \frac{v_{xf} - v_{xi}}{t} \quad \checkmark \quad \forall x_{xf} = v_{xi} + a_{x}t$$

For constant acceleration, average $v_x = \frac{v_{xi} + v_{xf}}{2} = \frac{2v_{xi} + a_xt}{2} = v_{xi} + \frac{1}{2}a_xt$

$$\overline{v}_x = \frac{x_f - x_i}{t_f - t_i} \text{ (If } t_f = t \text{ and } t_i = 0) \quad \overline{v}_x = \frac{x_f - x_i}{t} \quad \checkmark \quad X_f = x_i + \overline{v}_x t$$

Resulting Equation of Motion becomes

$$\chi_f = x_i + \overline{\nu}_x t = x_i + \nu_{xi} t + \frac{1}{2} a_x t^2$$

Kinematic Equations of Motion on a Straight Line Under Constant Acceleration

$$v_{xf}(t) = v_{xi} + a_x t$$

Velocity as a function of time

$$x_f - x_i = \frac{1}{2} \overline{v}_x t = \frac{1}{2} \left(v_{xf} + v_{xi} \right) t$$

Displacement as a function of velocities and time

$$x_f = x_i + v_{xi}t + \frac{1}{2}a_xt^2$$

Displacement as a function of time, velocity, and acceleration

$$v_{xf}^{2} = v_{xi}^{2} + 2a_{x}(x_{f} - x_{i})$$

Velocity as a function of Displacement and acceleration

You may use different forms of Kinematic equations, depending on the information given to you in specific physical problems!!

How do we solve a problem using a kinematic formula under constant acceleration?

- Identify what information is given in the problem.
 - Initial and final velocity?
 - Acceleration?
 - Distance, initial position or final position?
 - Time?
- Convert the units of all quantities to SI units to be consistent.
- Identify what the problem wants •
- Identify which kinematic formula is most appropriate and • easiest to solve for what the problem wants.
 - Frequently multiple formulae can give you the answer for the quantity you are looking for. \rightarrow Do not just use any formula but use the one that can be easiest to solve.
- Solve the equations for the quantity or quantities wanted. •

Example 2.11

Suppose you want to design an air-bag system that can protect the driver in a headon collision at a speed 100km/hr (~60miles/hr). Estimate how fast the air-bag must inflate to effectively protect the driver. Assume the car crumples upon impact over a distance of about 1m. How does the use of a seat belt help the driver?

How long does it take for the car to come to a full stop? \square As long as it takes for it to crumple. The initial speed of the car is $v_{xi} = 100 km / h = \frac{100000m}{3600s} = 28m / s$ We also know that $v_{xf} = 0m/s$ and $\chi_f - \chi_i = 1m$ Using the kinematic formula $v_{xf}^2 = v_{xi}^2 + 2a_x(x_f - x_i)$ The acceleration is $a_x = \frac{v_{xf}^2 - v_{xi}^2}{2(x_f - x_i)} = \frac{0 - (28m/s)^2}{2 \times 1m} = -390m/s^2$ Thus the time for air-bag to deploy is $t = \frac{v_{xf} - v_{xi}}{\alpha} = \frac{0 - 28m/s}{-390m/s^2} = 0.07s$ PHYS 1443-001, Spring 2011 Dr. Monday, Jan. 31, 2011 8

Falling Motion

- Falling motion is a motion under the influence of the gravitational pull (gravity) only; Which direction is a freely falling object moving? Yes, down to the center of the earth!!
 - A motion under constant acceleration
 - All kinematic formula we learned can be used to solve for falling motions.
- Gravitational acceleration is inversely proportional to the distance between the object and the center of the earth
- The magnitude of the gravitational acceleration is g=9.80m/s² on the surface of the earth, most of the time.
- The direction of gravitational acceleration is <u>ALWAYS</u> toward the center of the earth, which we normally call (-y); where up and down direction are indicated as the variable "y"
- Thus the correct denotation of gravitational acceleration on the surface of the earth is g=-9.80m/s² when +y points upward

Example for Using 1D Kinematic Equations on a Falling object (sim to Ex. 2.16) Stone was thrown straight upward at t=0 with +20.0m/s initial velocity on the roof of a 50.0m high building, What is the acceleration in this motion? g=-9.80m/s² (a) Find the time the stone reaches at the maximum height. What is so special about the maximum height? V=0 $v_f = v_{yi} + a_y t = +20.0 - 9.80t = 0.00m/s$ Solve for t $t = \frac{20.0}{9.80} = 2.04s$ (b) Find the maximum height. $y_f = y_i + v_{yi}t + \frac{1}{2}a_yt^2 = 50.0 + 20 \times 2.04 + \frac{1}{2} \times (-9.80) \times (2.04)^2$ =50.0+20.4=70.4(m)

Monday, Jan. 31, 2011

10

Example of a Falling Object cnt'd

(c) Find the time the stone reaches back to its original height.

 $t = 2.04 \times 2 = 4.08s$

(d) Find the velocity of the stone when it reaches its original height.

$$v_{yf} = v_{yi} + a_y t = 20.0 + (-9.80) \times 4.08 = -20.0(m/s)$$

(e) Find the velocity and position of the stone at t=5.00s.

Velocity
$$v_{yf} = v_{yi} + a_y t = 20.0 + (-9.80) \times 5.00 = -29.0 (m/s)$$

Position $y_f = y_i + v_{yi}t + \frac{1}{2}a_y t^2$
 $= 50.0 + 20.0 \times 5.00 + \frac{1}{2} \times (-9.80) \times (5.00)^2 = +27.5 (m)$

2D Coordinate Systems

- They make it easy and consistent to express locations or positions
- Two commonly used systems, depending on convenience, are
 - Cartesian (Rectangular) Coordinate System
 - Coordinates are expressed in (x,y)
 - Polar Coordinate System
 - Coordinates are expressed in distance from the origin ${\ensuremath{\mathbb R}}$ and the angle measured from the x-axis, $\theta(r,\!\theta)$
- Vectors become a lot easier to express and compute

Example

Cartesian Coordinate of a point in the xy plane are (x,y)=(-3.50,-2.50)m. Find the equivalent polar coordinates of this point.

Vector and Scalar

Vector quantities have both magnitudes (sizes)

and directions

Force, gravitational acceleration, momentum

Normally denoted in **BOLD** letters, \mathcal{F} , or a letter with arrow on top \mathcal{F}

Their sizes or magnitudes are denoted with normal letters, \mathcal{F} , or absolute values: $|\overline{T}|$ or $|\mathcal{F}|$

Scalar quantities have magnitudes only Can be completely specified with a value

Energy, heat, mass, time

and its unit Normally denoted in normal letters, \mathcal{E}

Both have units!!!

Properties of Vectors

 Two vectors are the same if their sizes and the directions are the same, no matter where they are on a coordinate system!!

Vector Operations

• Addition:

- Triangular Method: One can add vectors by connecting the head of one vector to the tail of the other (head-to-tail)
- Parallelogram method: Connect the tails of the two vectors and extend
- Addition is commutative: Changing order of operation does not affect the results A +B=B+A, A+B+C+D+E=E+C+A+B+D

- Subtraction:
 - The same as adding a negative vector: A B = A + (-B)

Since subtraction is the equivalent to adding a negative vector, subtraction is also commutative!!!

• Multiplication by a scalar is increasing the magnitude A, B=2A Mondat B = 2 A B = 2A B = 2AM = 2 A B = 2 A B = 2A A = 2A

Example for Vector Addition

A car travels 20.0km due north followed by 35.0km in a direction 60.0° west of north. Find the magnitude and direction of resultant displacement.

$$r = \sqrt{\left(A + B\cos\theta\right)^{2} + \left(B\sin\theta\right)^{2}}$$

= $\sqrt{A^{2} + B^{2}\left(\cos^{2}\theta + \sin^{2}\theta\right) + 2AB\cos\theta}$
= $\sqrt{A^{2} + B^{2} + 2AB\cos\theta}$
= $\sqrt{(20.0)^{2} + (35.0)^{2} + 2 \times 20.0 \times 35.0\cos60}$
= $\sqrt{2325} = 48.2(km)$
= $\tan^{-1}\frac{|\vec{B}|\sin 60}{|\vec{A}| + |\vec{B}|\cos 60}$
 $\tan^{-1}\frac{35.0\sin 60}{20.0 + 35.0\cos 60}$
Do this using components!!
 $\tan^{-1}\frac{30.3}{37.5} = 38.9^{\circ}$ to W wrt N

Components and Unit Vectors

Coordinate systems are useful in expressing vectors in their components

Jaehoon Yu

Unit Vectors

- Unit vectors are the ones that tells us the directions of the components
- Dimensionless
- Magnitudes these vectors are exactly 1
- Unit vectors are usually expressed in i, j, k or

$$\vec{i}, \vec{j}, \vec{k}$$

So a vector **A** can be expressed as

$$\vec{A} = A_x \vec{i} + A_y \vec{j} = |\vec{A}| \cos \theta \vec{i} + |\vec{A}| \sin \theta \vec{j}$$

Examples of Vector Operations

Find the resultant vector which is the sum of A=(2.0i+2.0j) and B=(2.0i-4.0j)

$$\vec{C} = \vec{A} + \vec{B} = (2.0\vec{i} + 2.0\vec{j}) + (2.0\vec{i} - 4.0\vec{j})$$

= $(2.0 + 2.0)\vec{i} + (2.0 - 4.0)\vec{j} = 4.0\vec{i} - 2.0\vec{j}(m)$
 $|\vec{C}| = \sqrt{(4.0)^2 + (-2.0)^2}$
= $\sqrt{16 + 4.0} = \sqrt{20} = 4.5(m)$ $\theta = \tan^{-1}\frac{C_y}{C_x} = \tan^{-1}\frac{-2.0}{4.0} = -27^\circ$

Find the resultant displacement of three consecutive displacements: $d_1=(15i+30j+12k)$ cm, $d_2=(23i+14j-5.0k)$ cm, and $d_3=(-13i+15j)$ cm

$$\vec{D} = \vec{d}_1 + \vec{d}_2 + \vec{d}_3 = (15\vec{i} + 30\vec{j} + 12\vec{k}) + (23\vec{i} + 14\vec{j} - 5.0\vec{k}) + (-13\vec{i} + 15\vec{j})$$

= $(15 + 23 - 13)\vec{i} + (30 + 14 + 15)\vec{j} + (12 - 5.0)\vec{k} = 25\vec{i} + 59\vec{j} + 7.0\vec{k}(cm)$
Magnitude $|\vec{D}| = \sqrt{(25)^2 + (59)^2 + (7.0)^2} = 65(cm)$

