PHYS 1443 – Section 001 Lecture #14

Wednesday, March 30, 2011 Dr. Jaehoon Yu (delivered by C. Medina)

- Energy Diagram
- General Energy Conservation & Mass Equivalence
- More on gravitational potential energy
 - Escape speed
- Power
- Linear Momentum

Announcements

- Second non-comprehensive term exam date
 - Time: 1 2:20pm, Wednesday, Apr. 6
 - Location: SH103
 - Covers: CH6.4 what we finish Monday, Apr. 4
- Colloquium Wednesday at 4pm in SH101
- A special seminar 1:30pm, Friday, Apr. 1, Planetarium

How is the conservative force related to the potential energy?

Work done by a force component on an object through the displacement Δx is

For an infinitesimal displacement Δx

Results in the conservative force-potential relationship

This relationship says that any conservative force acting on an object within a given system is the same as the negative derivative of the potential energy of the system with respect to the position.

1. spring-ball system: $F_s = -\frac{dU_s}{dx} = -\frac{d}{dx} \left(\frac{1}{2}kx^2\right) = -kx$ Does this statement 2. Earth-ball system: $F_g = -\frac{dU_g}{dv} = -\frac{d}{dv}(mgy) = -mg$ make sense?

The relationship works in both the conservative force cases we have learned!!!

Monday, March 28, 2011

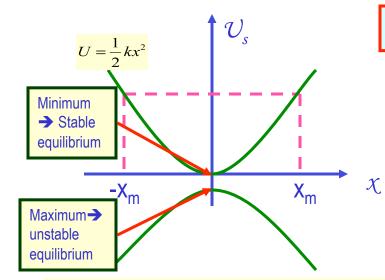
PHYS 1443-001, Spring 2011 Dr. Jaehoon Yu

 $W = F_{x}\Delta x = -\Delta U$

 $\lim_{\Delta x \to 0} \Delta U = -\lim_{\Delta x \to 0} F_x \Delta x$

 $F_x = -\frac{dU}{dx}$

 $dU = -F_x dx$


Energy Diagram and the Equilibrium of a System

One can draw potential energy as a function of position **>** Energy Diagram

Let's consider potential energy of a spring-ball system

What shape is this diagram?

A Parabola

What does this energy diagram tell you?

- 1. Potential energy for this system is the same independent of the sign of the position.
- 2. The force is 0 when the slope of the potential energy curve is 0 at the position.
- 3. $\chi=0$ is the stable equilibrium position of this system where the potential energy is minimum.

Position of a stable equilibrium corresponds to points where potential energy is at a minimum.

Position of an unstable equilibrium corresponds to points where potential energy is a maximum.

Monday, March 28, 2011

4

 $U_s = \frac{1}{2}kx^2$

General Energy Conservation and Mass-Energy Equivalence

General Principle of Energy Conservation

The total energy of an isolated system is conserved as long as all forms of energy are taken into account.

What about friction?

Friction is a non-conservative force and causes mechanical energy to change to other forms of energy.

However, if you add the new forms of energy altogether, the system as a whole did not lose any energy, as long as it is self-contained or isolated.

In the grand scale of the universe, no energy can be destroyed or created but just transformed or transferred from one to another. <u>The total energy of universe is constant as a function of time!</u> The total energy of the universe is conserved!

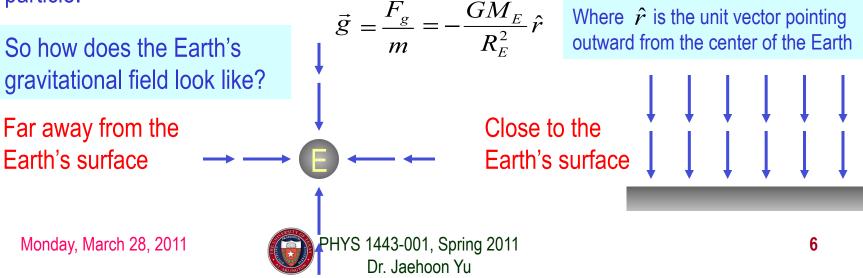
Principle of Conservation of Mass

Einstein's Mass-Energy equality. Monday, March 28, 2011

How many joules does your body correspond to?

PHYS 1443-001, Spring 2011 Dr. Jaehoon Yu

The Gravitational Field


The gravitational force is a field force. The force exists everywhere in the universe.

 $\vec{g} \equiv \vec{F}_g$

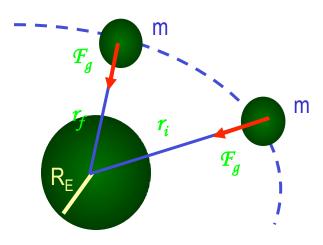
If one were to place a test object of mass m at any point in the space in the existence of another object of mass M, the test object will feel the gravitational force exerted by M, $\vec{F}_g = m\vec{g}$.

Therefore the gravitational field g is defined as

In other words, the gravitational field at a point in the space is the gravitational force experienced by a test particle placed at the point divided by the mass of the test particle.
$$\vec{E}$$

The Gravitational Potential Energy

What is the potential energy of an object at the height y from the surface of the Earth?


$$U = mgy$$

Do you think this would work in general cases?

No, it would not.

Because this formula is only valid for the case where the gravitational force Why not? is constant, near the surface of the Earth, and the generalized gravitational force is inversely proportional to the square of the distance.

OK. Then how would we generalize the potential energy in the gravitational field?

Since the gravitational force is a central force, and a central force is a conservative force, the work done by the gravitational force is independent of the path.

The path can be considered as consisting of many tangential and radial motions. Tangential motions do not contribute to work!!!

Monday, March 28, 2011

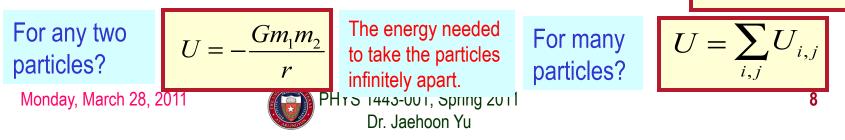
More on The Gravitational Potential Energy

Since the gravitational force is a radial force, it performs work only when the path has component in radial direction. Therefore, the work performed by the gravitational force that depends on the position becomes:

$$dW = \vec{F} \cdot d\vec{r} = F(r)dr$$
 For the whole path $W = \int_{r_i}^{r_f} F(r)dr$

Potential energy is the negative change of the work done through the path

Since the Earth's gravitational force is $F(r) = -\frac{GM_Em}{r^2}$


Thus the potential energy function becomes

$$U_{f} - U_{i} = \int_{r_{i}}^{r_{f}} \frac{GM_{E}m}{r^{2}} dr = -GM_{E}m \left[\frac{1}{r_{f}} - \frac{1}{r_{i}}\right]$$

 $\Delta U = U_f - U_i = -\int_{r_i}^{r_f} F(r) dr$

 GM_Em

Since only the difference of potential energy matters, by taking the infinite distance as the initial point of the potential energy, we obtain

Example of Gravitational Potential Energy

A particle of mass m is displaced through a small vertical distance Δy near the Earth's surface. Show that in this situation the general expression for the change in gravitational potential energy is reduced to the $\Delta U = -mg \Delta y$.

Taking the general expression of gravitational potential energy

Reorganizing the terms w/ the common denominator

Since the situation is close to the surface of the Earth

Therefore, ΔU becomes

$$\Delta U = -GM_E m \left(\frac{1}{r_f} - \frac{1}{r_i} \right)$$

$$(r_f - r_f) \qquad \Delta I$$

1

1

$$= -GM_E m \frac{(r_f - r_i)}{r_f r_i} = -GM_E m \frac{\Delta y}{r_f r_i}$$

$$r_i pprox R_E$$
 and $r_f pprox R_E$

$$\Delta U = -GM_E m \, \frac{\Delta y}{R_E^2}$$

Since on the surface of the Earth the gravitational field is

$$= \frac{GM_E}{R_E^2} \quad \begin{array}{c} \text{The potential} \\ \text{energy becomes} \end{array} \Delta U =$$

$$J = -mg\Delta y$$

9

Monday, March 28, 2011

g

Power

- Rate at which the work is done or the energy is transferred
 - What is the difference for the same car with two different engines (4) ____ cylinder and 8 cylinder) climbing the same hill?
 - → The time... 8 cylinder car climbs up the hill faster! —

Is the total amount of work done by the engines different? NO

Then what is different?

The rate at which the same amount of work performed is higher for 8 cylinders than 4.

Average power
$$\overline{P} \equiv \frac{\Delta W}{\Delta t}$$

Instantaneous power $P \equiv \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \frac{dW}{dt} = \lim_{\Delta t \to 0} (\sum \vec{F}) \cdot \frac{\Delta \vec{s}}{\Delta t} = (\sum \vec{F}) \cdot \vec{v} =$
Unit? $J/s = Watts$ $1HP \equiv 746Watts$ $\sum_{\lambda t \to 0} |\nabla \vec{F}| |\vec{v}| \cos \theta$

What do power companies sell? $1kWH = 1000Watts \times 3600s = 3.6 \times 10^6 J$

Energy

Energy Loss in Automobile

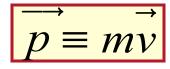
Automobile uses only 13% of its fuel to propel the vehicle.

- Incomplete burning
- Heat
- Sound

16% in friction in mechanical parts

4% in operating other crucial parts such as oil and fuel pumps, etc

13% used for balancing energy loss related to moving vehicle, like air resistance and road friction to tire, etc


Two frictional forces involved in moving vehicles $m_{car} = 1450kg$ Weight = mg = 14200NCoefficient of Rolling Friction; m =0.016 $\mu n = \mu mg = 227N$ Air Drag $f_a = \frac{1}{2}D\rho Av^2 = \frac{1}{2} \times 0.5 \times 1.293 \times 2v^2 = 0.647v^2$ Total Resistance $f_t = f_r + f_a$ Total power to keep speed v=26.8m/s=60mi/h $P = f_t v = (691N) \cdot 26.8 = 18.5kW$ $P_r = f_r v = (227) \cdot 26.8 = 6.08kW$ Monday, March 28, 2011PHYS 1443-001, Spi $P_a = f_a v = (464.7) \cdot 26.8 = 12.5kW$

Linear Momentum

The principle of energy conservation can be used to solve problems that are harder to solve just using Newton's laws. It is used to describe motion of an object or a system of objects.

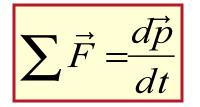
A new concept of linear momentum can also be used to solve physical problems, especially the problems involving collisions of objects.

Linear momentum of an object whose mass is mand is moving at a velocity of v is defined as

What can you tell from this definition about momentum?

- 1. Momentum is a vector quantity.
- 2. The heavier the object the higher the momentum
- 3. The higher the velocity the higher the momentum
- 4. Its unit is kg.m/s

What else can use see from the definition? Do you see force?


The change of momentum in a given time interval

$$\frac{\Delta \vec{p}}{\Delta t} = \frac{m\vec{v} - m\vec{v}_0}{\Delta t} = \frac{m(\vec{v} - \vec{v}_0)}{\Delta t} = m\frac{\Delta \vec{v}}{\Delta t} = m\vec{a} = \sum \vec{F}$$
YS 1443-001, Spring 2011
Dr. Jaeboon Yu
13

Monday, March 28, 2011

Linear Momentum and Forces

What can we learn from this Force-momentum relationship?

- The rate of the change of particle's momentum is the same as the net force exerted on it.
- When net force is 0, the particle's linear momentum is constant as a function of time.
- If a particle is isolated, the particle experiences no net force. Therefore its momentum does not change and is conserved.

🔄 Motion of a meteorite

Something else we can do with this relationship. What do you think it is?

The relationship can be used to study the case where the mass changes as a function of time.

$$\sum \vec{F} = \frac{d\vec{p}}{dt} = \frac{d\left(m\vec{v}\right)}{dt} = \frac{dm}{dt}\vec{v} + m\frac{d\vec{v}}{dt}$$

Motion of a rocket

Can you think of a few cases like this?

wonuay, warch 20, 2011