PHYS 1444 – Section 004 Lecture #5

Wednesday, Feb. 1, 2012 Dr. **Jae**hoon **Yu**

- Chapter 22 Gauss' Law
 - Gauss' Law
 - Electric Flux
 - Gauss' Law with many charges
 - What is Gauss' Law good for?
- Chapter 23 Electric Potential
 - Electric Potential Energy

Announcements

 It was better than Monday that several of you have subscribed to the class e-mail distribution list <u>PHYS1444-004-SP12</u>. Please be sure to subscribe by

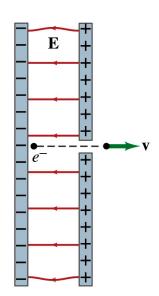
clicking on the link below.

https://listserv.uta.edu/cgi-bin/wa.exe?A0=PHYS1444-004-SP12

- I now have 24!
- Quiz #2
 - Wednesday, Feb. 8
 - Beginning of the class
 - Covers: CH21.5 through what we learn on Monday, Feb. 6
- Reading assignments
 - CH21.12 and CH21.13

Special Project

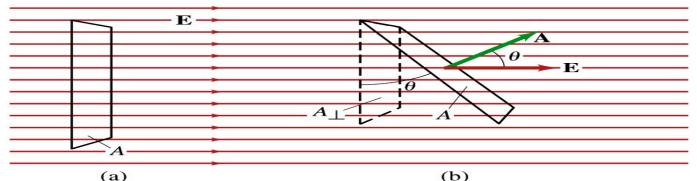
- Particle Accelerator. A charged particle of mass M with charge -Q is accelerated in the uniform field E between two parallel charged plates whose separation is D as shown in the figure on the right. The charged particle is accelerated from an initial speed v₀ near the negative plate and passes through a tiny hole in the positive plate.
 - Derive the formula for the electric field E to accelerate the charged particle to a fraction *f* of the speed of light *c*. Express E in terms of M, Q, D, *f*, c and v₀.
 - (a) Using the Coulomb force and kinematic equations. (8 points)
 - (b) Using the work-kinetic energy theorem. (8 points)
 - (c) Using the formula above, evaluate the strength of the electric field E to accelerate an electron from 0.1% of the speed of light to 90% of the speed of light. You need to look up the relevant constants, such as mass of the electron, charge of the electron and the speed of light. (5 points)
- Due beginning of the class Monday, Feb. 13



Gauss' Law

- Gauss' law establishes the relationship between electric charge and electric field.
 - More generalized and elegant form of Coulomb's law.
- The electric field by the distribution of charges can be obtained using Coulomb's law by summing (or integrating) over the charge distributions.
- Gauss' law, however, gives an additional insight into the nature of electrostatic field and a more general relationship between the charge and the field

Electric Flux



- Let's imagine a surface of area A through which a uniform electric field E passes
- The electric flux Φ_{F} is defined as
 - $-\Phi_{\rm F}$ =EA, if the field is perpendicular to the surface
 - $-\Phi_{\rm F}$ =EAcos θ , if the field makes an angle θ to the surface
- So the electric flux is defined as $\Phi_F = \vec{E} \cdot \vec{A}$.
- How would you define the electric flux in words?
 - The total number of field lines passing through the unit area perpendicular to the field. $N_E \propto EA_\perp = \Phi_E$

Wednesday, Feb. 1, 2012

Example 22 – 1

• Electric flux. (a) Calculate the electric flux through the rectangle in the figure (a). The rectangle is 10cm by 20cm and the electric field is uniform with magnitude 200N/C. (b) What is the flux in figure if the angle is 30 degrees?

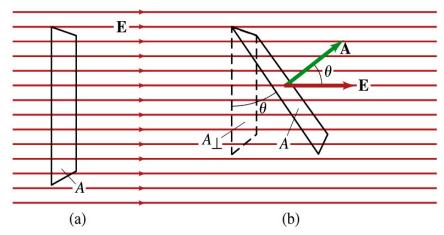
The electric flux is defined as $\Phi_{E} = \vec{E} \cdot \vec{A} = EA\cos\theta$

So when (a) θ =0, we obtain

$$\Phi_E = EA\cos\theta = EA = (200N/C) \cdot (0.1 \times 0.2m^2) = 4.0 \,\mathrm{N} \cdot \mathrm{m}^2/C$$

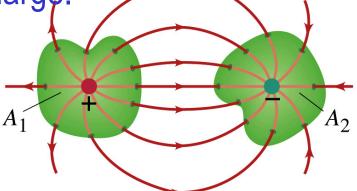
And when (b) θ =30 degrees, we obtain

$$\Phi_E = EA\cos 30^\circ = (200N/C) \cdot (0.1 \times 0.2m^2) \cos 30^\circ = 3.5 \,\mathrm{N} \cdot \mathrm{m}^2/C$$



Generalization of the Electric Flux

- The field line starts or ends only on a charge.
- Sign of the net flux on the surface A₁?
 - The net outward flux (positive flux)
- How about A₂?
 - Net inward flux (negative flux)
- What is the flux in the bottom figure?
 - There should be a net inward flux (negative flux) since the total charge inside the volume is negative.
- The net flux that crosses an enclosed surface is proportional to the total charge inside the surface. → This is the crux of Gauss' law.

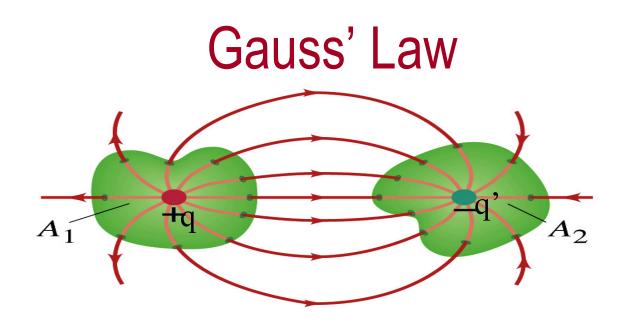


-20

Gauss' Law

- The precise relationship between flux and the enclosed charge is given by Gauss' Law $\oint \vec{E} \cdot d\vec{A} = \frac{Q_{encl}}{\varepsilon_0}$
 - ϵ_0 is the permittivity of free space in the Coulomb's law
- A few important points on Gauss' Law
 - Freedom to choose!!
 - The integral is performed over the value of **E** on a closed surface of our choice in any given situation.
 - Test of the existence of the electrical charge!!
 - The charge Q_{encl} is the net charge enclosed by the arbitrary closed surface of our choice.
 - This law is universal!
 - It does NOT matter where or how much charge is distributed inside the surface.
 - The charge outside the surface does not contribute to Q_{encl} . Why?
 - The charge outside the surface might impact field lines but not the total number of lines entering or leaving the surface

Wednesday, Feb. 1, 2012



- Let's consider the case in the above figure.
- What are the results of the closed integral of the Gaussian surfaces A₁ and A₂?

- For A₁
$$\oint \vec{E} \cdot d\vec{A} = \frac{+q}{\varepsilon_0}$$

- For A₂ $\oint \vec{E} \cdot d\vec{A} = \frac{-q'}{\varepsilon_0}$
Vednesday, Feb. 1, 2012 \overrightarrow{E}_0
HYS 1444-004, Spring 2012 Dr.
Jaehoon Yu

V

Coulomb's Law from Gauss' Law

- Let's consider a charge Q enclosed inside our imaginary gaussian surface of sphere of radius r.
 - Since we can choose any surface enclosing the charge, we choose the simplest possible one! ^(C)
- The surface is symmetric about the charge.
 - What does this tell us about the field E?
 - Must have the same magnitude (uniform) at any point on the surface
 - Points radially outward / inward parallel to the surface vector dA.
- The gaussian integral can be written as $\oint \vec{E} \cdot d\vec{A} = \oint E dA = E \oint dA = E \left(4\pi r^2\right) = \frac{Q_{encl}}{\varepsilon_0} = \frac{Q}{\varepsilon_0} \quad \text{Solve for E} \quad E = \frac{Q}{4\pi\varepsilon_0 r^2}$ Electric Field of

Coulomb's Law

Wednesday, Feb. 1, 2012

Gauss' Law from Coulomb's Law

- Let's consider a single static point charge Q surrounded by an imaginary spherical surface.
- Coulomb's law tells us that the electric field at a spherical surface is $E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
- Performing a closed integral over the surface, we obtain

$$\oint \vec{E} \cdot d\vec{A} = \oint \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r} \cdot d\vec{A} = \oint \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} dA$$
$$= \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \oint dA = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} (4\pi r^2) = \frac{Q}{\varepsilon_0}$$
Wednesday, Feb. 1, 2012
Wednesday, Feb. 1, 2012
Gauss' Law 11

Gauss' Law from Coulomb's Law Irregular Surface

- Let's consider the same single static point charge Q surrounded by a symmetric spherical surface A₁ and a randomly shaped surface A₂.
- What is the difference in the number of field lines due to the charge Q, passing through the two surfaces?
 - None. What does this mean?
 - The total number of field lines passing through the surface is the same no matter what the shape of the enclosed surface is.

A2

- So we can write: $\oint_{A_1} \vec{E} \cdot d\vec{A} = \oint_{A_2} \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$
- What does this mean?
 - The flux due to the given enclosed charge is the same no matter what the shape of the surface enclosing it is. → Gauss' law, \$\oint_{\vec{E}} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}\$, is valid for any surface surrounding a single point charge Q. → Freedom to choose!

Gauss' Law w/ more than one charge

- Let's consider several charges inside a closed surface.
- For each charge, Q_i, inside the chosen closed surface,

$$\oint \vec{E}_i \cdot d\vec{A} = \frac{Q_i}{\varepsilon_0}$$
 What is E_i ?
The electric field produced by Q_i alone!

• Since electric fields can be added vectorially, following the superposition principle, the total field **E** is equal to the sum of the fields due to each charge $\vec{E} = \sum \vec{E}_i$ plus any external field. So What is Q_{encl} ?

$$\oint \vec{E} \cdot d\vec{A} = \oint \left(\vec{E}_{ext} + \sum \vec{E}_i\right) \cdot d\vec{A} = \frac{\sum Q_i}{\mathcal{E}_0} = \frac{Q_{encl}}{\mathcal{E}_0}$$
The total enclosed charge!

The value of the flux depends on the charge enclosed in the surface!! → Gauss' law.

So what is Gauss' Law good for?

- Derivation of Gauss' law from Coulomb's law is only valid for <u>static electric charge</u>.
- Electric field can also be produced by changing magnetic fields.
 - Coulomb's law cannot describe this field while Gauss' law is still valid → can describe electric field in this situation also!
- Gauss' law is more general than Coulomb's law.
 - Can be used to obtain electric field, force or charges

Gauss' Law: Any **<u>differences</u>** between the input and output flux of the electric field over any enclosed surface is due to the charge within that surface!!!

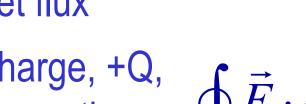
Solving problems with Gauss' Law

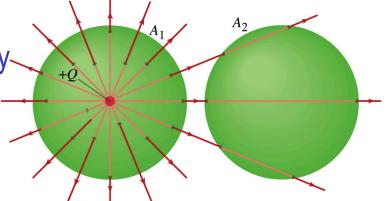
- Identify the symmetry of the charge distributions
- Draw the appropriate gaussian surface, making sure it passes through the point you want to know the electric field
- Use the symmetry of charge distribution to determine the direction of E at the point of gaussian surface
- Evaluate the flux
- Calculate the charge enclosed by the gaussian surface
 - Ignore all the charges outside the gaussian surface
- Equate the flux to the enclosed charge and solve for E

Example 22 – 2

Flux from Gauss' Law: Consider two gaussian surfaces, A_1 and A_2 , shown in the figure. The onlycharge present is the charge +Q at the center of – surface A_1 . What is the net flux through each – surface A_1 and A_2 ?

- The surface A₁ encloses the charge +Q, so from Gauss' law we obtain the total net flux
- The surface A₂ the charge, +Q, is outside the surface, so the total net flux is 0.

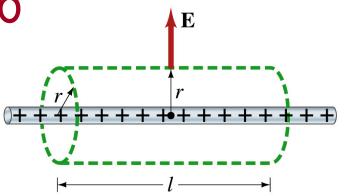




 $\oint \vec{E} \cdot d\vec{A} = \frac{+\underline{\mathcal{Y}}}{\varepsilon_0}$ $\oint \vec{E} \cdot d\vec{A} = \frac{0}{\varepsilon_0} = 0$

Example 22 – 6

Long uniform line of charge: A very long straight wire possesses a uniform positive charge per unit length, ℓ . Calculate the electric field at the points near but outside the wire, far from the ends.



- Which direction do you think the field due to the charge on the wire is?
 - Radially outward from the wire, the direction of radial vector **r**.
- Due to cylindrical symmetry, the field is the same on the gaussian surface of a cylinder surrounding the wire.
 - The end surfaces do not contribute to the flux at all. Why?
 - Because the field vector **E** is perpendicular to the surface vector d**A**.

