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PHYS 3313 – Section 001 
Lecture #17 

Wednesday, Mar. 26, 2014 
Dr. Jaehoon Yu 

•  Probability of Particle 
•  Schrodinger Wave Equation and Solutions 
•  Normalization and Probability 
•  Time Independent Schrodinger Equation 
•  Expectation Values 
•  Momentum Operator 
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Announcements 
•  Research paper template has been uploaded onto 

the class web page link to research 
•  Special colloquium on April 2, triple extra credit 
•  Colloquium this Wednesday at 4pm in SH101 



Special Project #4 
•  Prove that the wave function Ψ=A[sin(kx-ωt)

+icos(kx-ωt)] is a good solution for the time-
dependent Schrödinger wave equation.  Do NOT 
use the exponential expression of the wave 
function. (10 points) 

•  Determine whether or not the wave function 
Ψ=Ae-α|x| satisfy the time-dependent Schrödinger 
wave equation. (10 points) 

•  Due for this special project is Monday, Apr. 7. 
•  You MUST have your own answers! 
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Probability of the Particle 
•  The probability of 

observing the particle 
between x and x + dx in 
each state is 

 
•  Note that E0 = 0 is not a 

possible energy level. 
•  The concept of energy 

levels, as first discussed 
in the Bohr model, has 
surfaced in a natural 
way by using waves. 
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The Schrödinger Wave Equation 
•  Erwin Schrödinger and Werner Heinsenberg 

proposed quantum theory in 1920 
•  The two proposed very different forms of equations 
•  Heinserberg: Matrix based framework 
•  Schrödinger: Wave mechanics, similar to the 

classical wave equation 
•  Paul Dirac and Schrödinger later on proved that 

the two give identical results 
•  The probabilistic nature of quantum theory is 

contradictory to the direct cause and effect seen 
in classical physics and makes it difficult to grasp! 
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The Schrödinger Wave Equation 
n The Schrödinger wave equation in its time-dependent 

form for a particle of energy E moving in a potential V in 
one dimension is 

 

n The extension into three dimensions is 

•  where       is an imaginary number 
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i
∂Ψ x,t( )

∂t
= − 

2

2m
∂2Ψ x,t( )

∂x2
+VΨ x,t( )

 
i ∂Ψ

∂t
= − 

2

2m
∂2Ψ
∂x2

+ ∂2Ψ
∂y2

+ ∂2Ψ
∂z2

⎛
⎝⎜

⎞
⎠⎟
+VΨ x, y, z,t( )



The wave equation must be linear so that we can use the superposition principle to.  Prove 
that the wave function in Schrodinger equation is linear by showing that it is satisfied for 
the wave equation Ψ (x,t)=aΨ1 (x,t)+bΨ2 (x,t) where a and b are constants and Ψ1 (x,t) 
and Ψ2 (x,t) describe two waves each satisfying the Schrodinger Eq. 

Ex 6.1: Wave equation and Superposition 
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Ψ = aΨ1 + bΨ2

∂Ψ
∂t

= ∂
∂t

aΨ1 + bΨ2( ) = a ∂Ψ1

∂t
+ b ∂Ψ2

∂t

∂Ψ
∂x

= ∂
∂x

aΨ1 + bΨ2( ) = a ∂Ψ1

∂x
+ b ∂Ψ2

∂x
∂2Ψ
∂x2

= ∂
∂x

a ∂Ψ1

∂x
+ b ∂Ψ2

∂x
⎛
⎝⎜

⎞
⎠⎟ = a

∂2Ψ1

∂x2
+ b ∂

2Ψ2

∂x2

 
i ∂Ψ

∂t
= − 

2

2m
∂2Ψ
∂x2

+VΨ

 
i ∂Ψ

∂t
= i a ∂Ψ1

∂t
+ b ∂Ψ2

∂t
⎛
⎝⎜

⎞
⎠⎟ = − 

2

2m
a ∂

2Ψ1

∂x2
+ b ∂

2Ψ2

∂x2
⎛
⎝⎜

⎞
⎠⎟
+V aΨ1 + bΨ2( )

 
a i ∂Ψ1

∂t
+ 

2

2m
∂2Ψ1

∂x2
−VΨ1

⎛
⎝⎜

⎞
⎠⎟
= −b i ∂Ψ2

∂t
+ 

2

2m
∂2Ψ2

∂x2
−VΨ2

⎛
⎝⎜

⎞
⎠⎟
= 0

 
i ∂Ψ1

∂t
= − 

2

2m
∂2Ψ1

∂x2
+VΨ1

 
i ∂Ψ2

∂t
= − 

2

2m
∂2Ψ2

∂x2
+VΨ2

Rearrange terms 
 
i ∂Ψ

∂t
+ 

2

2m
∂2Ψ
∂x2

−VΨ = i ∂
∂t

+ 
2

2m
∂2

∂x2
−V

⎛
⎝⎜

⎞
⎠⎟
Ψ = 0



General Solution of the Schrödinger 
Wave Equation 

•  The general form of the solution of the Schrödinger wave 
equation is given by: 

•  which also describes a wave propagating in the x direction. In 
general the amplitude may also be complex. This is called the 
wave function of the particle. 

•  The wave function is also not restricted to being real. Only the 
physically measurable quantities (or observables) must be 
real. These include the probability, momentum and energy. 
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Ψ x,t( ) = Aei kx−ωt( ) = A cos kx −ωt( ) + isin kx −ωt( )⎡⎣ ⎤⎦



Show that Aei(kx-ωt) satisfies the time-dependent Schrodinger wave Eq.  
Ex 6.2: Solution for Wave Equation 
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Ψ = Aei kx−ωt( )

∂Ψ
∂x

= ∂
∂x

Aei kx−ωt( )( ) = iAkei kx−ωt( ) = ikΨ

 
i ∂Ψ

∂t
= i −iωΨ( ) = ωΨ = − 

2

2m
−k2Ψ( ) +VΨ

∂Ψ
∂t

= ∂
∂t

Aei kx−ωt( )( ) = −iAωei kx−ωt( ) = −iωΨ

∂2Ψ
∂x2

= ∂
∂x

ikΨ( ) = ik ∂
∂x

Ψ( ) = ik iAkei kx−ωt( )( ) = −Ak2ei kx−ωt( ) = −k2Ψ

 
ω − 

2k2

2m
−V

⎛
⎝⎜

⎞
⎠⎟
Ψ = 0

E − p2

2m
−V = 0

 
The Energy: E = hf = h ω

2π
⎛
⎝⎜

⎞
⎠⎟ = ω

= E − p2

2m
−V

⎛
⎝⎜

⎞
⎠⎟
= 0

 
The wave number: k = 2π

λ
= 2π
h p

= 2π p
h

= p
  The momentum: p = k

From the energy conservation: E = K +V = p2

2m
+V

So Aei(kx-ωt) is a good solution and satisfies Schrodinger Eq.   



Determine Ψ (x,t)=Asin(kx-ωt) is an acceptable solution for the time-
dependent Schrodinger wave Eq.  

Ex 6.3: Bad Solution for Wave Equation 
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Ψ = Asin kx −ωt( )
∂Ψ
∂x

= ∂
∂x

Asin kx −ωt( )( ) = kAcos kx −ωt( )

 
i −ω cos kx −ωt( )( ) = − 

2

2m
−k2 sin kx −ωt( )( ) +V sin kx −ωt( )

∂Ψ
∂t

= ∂
∂t

Asin kx −ωt( )( ) = −Aω cos kx −ωt( )

∂2Ψ
∂x2

= ∂
∂x

kAcos kx −ωt( )( ) = −k2Asin kx −ωt( ) = −k2Ψ

This is not true in all x and t.  So Ψ (x,t)=Asin(kx-ωt) is not an acceptable 
solution for Schrodinger Eq.   

 
−iω cos kx −ωt( ) = 2k2

2m
+V

⎛
⎝⎜

⎞
⎠⎟
sin kx −ωt( )

−iE cos kx −ωt( ) = p2

2m
+V

⎛
⎝⎜

⎞
⎠⎟
sin kx −ωt( )



Normalization and Probability 
•  The probability P(x) dx of a particle being between x 

and X + dx was given in the equation 

•  Here Ψ* denotes the complex conjugate of Ψ      
•  The probability of the particle being between x1 and x2 

is given by 
 
•  The wave function must also be normalized so that the 

probability of the particle being somewhere on the x 
axis is 1. 
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P x( )dx = Ψ* x,t( )Ψ x,t( )dx

P = Ψ*Ψdx
x1

x2∫

Ψ* x,t( )Ψ x,t( )dx
−∞

+∞

∫ = 1



Consider a wave packet formed by using the wave function that Ae-α|x|, 
where A is a constant to be determined by normalization.  Normalize this 
wave function and find the probabilities of the particle being between 0 and 
1/α, and between 1/α and 2/α.   

Ex 6.4: Normalization 
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Ψ = Ae−α x

Ψ*

−∞

+∞

∫ Ψdx = Ae−α x( )* Ae−α x( )
−∞

+∞

∫ dx =Probabilit
y density A*e−α x( ) Ae−α x( )

−∞

+∞

∫ dx =

= A2e−2α x

−∞

+∞

∫ dx =

Ψ = α e−α x  A = α Normalized Wave Function 

2A2

−2α
e−2α x

0

+∞

= 0 + A
2

α
= 12 A2e−2α x

0

+∞

∫ dx =



Using the wave function, we can compute the probability for a particle to be 
with 0 to 1/α and 1/α to 2/α. 

Ex 6.4: Normalization, cont’d 

Wednesday, Mar. 26, 
2014 

13 PHYS 3313-001, Spring 2014                      
Dr. Jaehoon Yu 

Ψ = α e−α x

P = Ψ*

0

1 α

∫ Ψdx =

For 0 to 1/α: 

For 1/α to 2/α: 

How about 2/α:to ∞? 

αe−2αx
0

1 α

∫ dx =
α
−2α

e−2αx
0

1 α

= − 1
2
e−2 −1( ) ≈ 0.432

P = Ψ*

1 α

2 α

∫ Ψdx = αe−2αx
1 α

2 α

∫ dx =
α
−2α

e−2αx
1 α

2 α

= − 1
2
e−4 − e−2( ) ≈0.059



Properties of Valid Wave Functions 
Boundary conditions 
1)  To avoid infinite probabilities, the wave function must be finite 

everywhere. 
2)  To avoid multiple values of the probability, the wave function must be 

single valued. 
3)  For finite potentials, the wave function and its derivatives must be 

continuous. This is required because the second-order derivative 
term in the wave equation must be single valued. (There are 
exceptions to this rule when V is infinite.) 

4)  In order to normalize the wave functions, they must approach zero as 
x approaches infinity. 

Solutions that do not satisfy these properties do not generally 
correspond to physically realizable circumstances. 

Wednesday, Mar. 26, 
2014 

14 PHYS 3313-001, Spring 2014                      
Dr. Jaehoon Yu 



Time-Independent Schrödinger Wave Equation 
•  The potential in many cases will not depend explicitly on time. 
•  The dependence on time and position can then be separated 

in the Schrödinger wave equation. Let, 
 

 which yields: 
 

 Now divide by the wave function: 
•  The left side of this last equation depends only on time, and 

the right side depends only on spatial coordinates. Hence each 
side must be equal to a constant. The time dependent side is 
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Ψ x,t( ) =

 
iψ x( ) ∂ f t( )

∂t
= −
2 f t( )
2m

∂2ψ x( )
∂x2

+V x( )ψ x( ) f t( )

 
i 1
f t( )

∂ f t( )
∂t

=

 
i 1
f
df
dt

= B

ψ x( ) f t( )

 
− 

2

2m
1

ψ x( )
∂2ψ x( )
∂x2

+V x( )



n  We integrate both sides and find: 

 where C is an integration constant that we may choose to be 0. 
Therefore 

 
 This determines f to be by comparing it to the wave function of a free 
particle 

 
 
n  This is known as the time-independent Schrödinger wave 

equation, and it is a fundamental equation in quantum mechanics. 

Time-Independent Schrödinger Wave Equation(con’t) 
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i df

f∫ = Bdt∫

 
ln f = Bt

i

 f t( ) = eBt i = e− iBt 

 
i 1
f t( )

∂ f t( )
∂t

= E

 
− 

2

2m
d 2ψ x( )
dx2

+V x( )ψ x( ) = Eψ x( )

 ⇒ i ln f =

= e− iωt  ⇒ B  =ω  ⇒ B = ω =

Bt +C

E



Stationary State 
•  Recalling the separation of variables:  
     and with  f(t) =            the wave function can be 

written as: 
•  The probability density becomes: 

 
•  The probability distributions are constant in time. 

This is a standing wave phenomena that is called the 
stationary state. 

e− iωt
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Ψ x,t( ) =ψ x( ) f t( )

Ψ x,t( ) =ψ x( )e− iωt

Ψ*Ψ = ψ 2 x( ) eiωte− iωt( ) =ψ 2 x( )



Comparison of Classical and 
Quantum Mechanics 

•  Newton’s second law and Schrödinger’s wave equation 
are both differential equations. 

•  Newton’s second law can be derived from the 
Schrödinger wave equation, so the latter is the more 
fundamental. 

•  Classical mechanics only appears to be more precise 
because it deals with macroscopic phenomena. The 
underlying uncertainties in macroscopic measurements 
are just too small to be significant due to the small size 
of the Planck’s constant 
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Expectation Values 
•  In quantum mechanics, measurements can only be expressed in terms 

of average behaviors since precision measurement of each event is 
impossible (what principle is this?) 

•  The expectation value is the expected result of the average of many 
measurements of a given quantity. The expectation value of x is 
denoted by <x>. 

•  Any measurable quantity for which we can calculate the expectation 
value is called a physical observable. The expectation values of 
physical observables (for example, position, linear momentum, angular 
momentum, and energy) must be real, because the experimental 
results of measurements are real. 

•  The average value of x is  
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x = N1x1 + N2x2 + N3x3 + N4x4 +

N1 + N2 + N3 + N4 +
=

Nixi
i
∑

Ni
i
∑



Continuous Expectation Values 
•  We can change from discrete to 

continuous variables by using 
the probability P(x,t) of 
observing the particle at a 
particular x. 

•  Using the wave function, the 
expectation value is: 

•  The expectation value of any 
function g(x) for a normalized 
wave function: 
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x =
xP x( )dx

−∞

+∞

∫
P x( )dx

−∞

+∞

∫

x =
xΨ x,t( )*Ψ x,t( )dx

−∞

+∞

∫
Ψ x,t( )*Ψ x,t( )dx

−∞

+∞

∫

g x( ) = Ψ x,t( )* g x( )Ψ x,t( )dx
−∞

+∞

∫



Momentum Operator 
•  To find the expectation value of p, we first need to represent p in 

terms of x and t. Consider the derivative of the wave function of a free 
particle with respect to x: 

 

 With k = p / ħ  we have 
 

 This yields 
 
•  This suggests we define the momentum operator as             . 
•  The expectation value of the momentum is 

Wednesday, Mar. 26, 
2014 

21 PHYS 3313-001, Spring 2014                      
Dr. Jaehoon Yu 

∂Ψ
∂x

= ∂
∂x

ei kx−ωt( )⎡⎣ ⎤⎦ =
∂Ψ
∂x

=

p Ψ x,t( )⎡⎣ ⎤⎦ =

 
p̂ = −i ∂

∂x

p =

ikei kx−ωt( ) = ikΨ

 
i p

Ψ

 
−i

∂Ψ x,t( )
∂x

Ψ* x,t( )
−∞

+∞

∫ p̂Ψ x,t( )dx =
 
−i Ψ* x,t( )

−∞

+∞

∫
∂Ψ x,t( )

∂x
dx


