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PHYS 3313 – Section 001 
Lecture #21 

Wednesday, Apr. 9, 2014 
Dr. Jaehoon Yu 

•  Simple Harmonic Oscillator 
•  Barriers and Tunneling 
•  Alpha Particle Decay 
•  Use of Schrodinger Equation on Hydrogen Atom 
•  Solutions for Schrodinger Equation for Hydrogen 

Atom 
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Announcements 
•  Research paper deadline is Monday, Apr. 28 
•  Research presentation deadline is Sunday, Apr. 27 
•  Homework #5 

–  CH6 end of chapter problems: 34, 39, 46, 62 and 65 
–  Due Wednesday, Apr. 16 

•  Reading assignments 
–  CH7.6 and the entire CH8 

•  Bring out homework #4 at the end of class 
•  Quiz results 

–  Class average: 27.7/50 
•  Equivalent to 55.4/100 
•  Previous quizzes: 30.2/100 and 53.4/100 

–  Top score: 50/50 
•  Colloquium today, Dr. Hadavand of UTA  





Reminder: Special project #5 
•  Show that the Schrodinger equation 

becomes Newton’s second law in the 
classical limit.  (15 points) 

•  Deadline Monday, Apr. 21, 2014 
•  You MUST have your own answers! 
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Reminder: Research Project Report 
1.  Must contain the following at the minimum  

–  Original theory or Original observation 
–  Experimental proofs or Theoretical prediction + 

subsequent experimental proofs 
–  Importance and the impact of the theory/experiment 
–  Conclusions 

2.  Each member of the group writes a 10 (max) page 
report, including figures 

–  10% of the total grade 
–  Can share the theme and facts but you must write your 

own! 
–  Text of the report must be your original! 
–  Due Mon., Apr. 28, 2014 
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Research Presentations 
•  Each of the 10 research groups makes a 10min presentation 

–  8min presentation + 2min Q&A 
–  All presentations must be in power point 
–  I must receive all final presentation files by 8pm, Sunday, Apr. 27 

•  No changes are allowed afterward 
–  The representative of the group makes the presentation followed by all group 

members’ participation in the Q&A session 
•  Date and time:  

–  In class Monday, Apr. 28 or in class Wednesday, Apr. 30 
•  Important metrics 

–  Contents of the presentation: 60% 
•  Inclusion of all important points as mentioned in the report 
•  The quality of the research and making the right points 

–  Quality of the presentation itself: 15% 
–  Presentation manner: 10% 
–  Q&A handling: 10% 
–  Staying in the allotted presentation time: 5% 
–  Judging participation and sincerity: 5% 



The Simple Harmonic Oscillator 
•  Simple harmonic oscillators describe many physical situations: springs, diatomic molecules 

and atomic lattices.   

•  Consider the Taylor expansion of a potential function: 

 The minimum potential at x=x0, so dV/dx=0 and V1=0; and the zero potential V0=0, we 
have 

 Substituting this into the wave equation: 

   
 Let              and    which yields     . 
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Parabolic Potential Well 

•  If the lowest energy level is zero, this violates the uncertainty principle. 
•  The wave function solutions are               where Hn(x) are Hermite 

polynomial function of order n. 
•  In contrast to the particle in a box, where the oscillatory wave function is a sinusoidal 

curve, in this case the oscillatory behavior is due to the polynomial, which dominates 
at small x. The exponential tail is provided by the Gaussian function, which 
dominates at large x. 
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Analysis of the Parabolic Potential Well 

•  The energy levels are given by 

•  The zero point energy is called the Heisenberg limit: 

•  Classically, the probability of finding the mass is 
greatest at the ends of motion’s range and smallest at 
the center (that is, proportional to the amount of time 
the mass spends at each position). 

•  Contrary to the classical one, the largest probability for 
this lowest energy state is for the particle to be at the 
center. 
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Ex. 6.12: Harmonic Oscillator stuff 
•  Normalize the ground state wave function ψ0 for the 

simple harmonic oscillator and find the expectation 
values <x> and <x2>. 
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Barriers and Tunneling 
•  Consider a particle of energy E approaching a potential barrier of height V0 and the 

potential everywhere else is zero. 
•  We will first consider the case when the energy is greater than the potential barrier. 
•  In regions I and III the wave numbers are: 

•  In the barrier region we have 
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kI = kIII =

2mE


 
kII =

2m E −V0( )


     where V =V0



Reflection and Transmission 
•  The wave function will consist of an incident wave, a reflected wave, and a 

transmitted wave. 
•  The potentials and the Schrödinger wave equation for the three regions are as 

follows: 
 
 
 
 
•  The corresponding solutions are: 
 
 
•  As the wave moves from left to right, we can simplify the wave functions to: 
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Region I x < 0( )           V = 0            d

2ψ I

dx2 + 2m
2 Eψ I = 0

Region I x < 0( )           ψ I = Ae
ikI x + Be− ikI x

Incident wave          ψ I (incident) = AeikI x

 
Region II 0 < x < L( )   V =V0            d

2ψ II

dx2 + 2m
2 E −V0( )ψ II = 0

 
Region III x > L( )         V = 0             d

2ψ III

dx2 + 2m
2 Eψ III = 0

Region II 0 < x < L( )   ψ II = Ce
ikII x + De− ikII x

Region III x > L( )         ψ III = Fe
ikI x +Ge− ikI x

Reflected wave       ψ I (reflected) = Be− ikI x

Transmitted wave   ψ III (transmitted) = FeikI x



Probability of Reflection and Transmission 
•  The probability of the particles being reflected R or transmitted T is: 

•  The maximum kinetic energy of the photoelectrons depends on the value 
of the light frequency f and not on the intensity. 

•  Because the particles must be either reflected or transmitted we have:  R 
+ T = 1 

•  By applying the boundary conditions x → ±∞, x = 0, and x = L, we arrive 
at the transmission probability: 

•  When does the transmission probability become 1? 
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