PHYS 3313 – Section 001 Lecture #23 Tuesday, Apr. 16, 2014

Dr. Jaehoon Yu

- Schrodinger Equation for Hydrogen Atom
- Quantum Numbers
- Solutions to the Angular Equations
- Zeeman Effect
- Intrinsic Spin

Announcements

- Research paper deadline is Monday, Apr. 28
- Research presentation file deadline is Sunday, Apr. 27
- Reminder: Homework #5
 - CH6 end of chapter problems: 34, 39, 46, 62 and 65
 - Due Wednesday, Apr. 16
- Homework #6
 - CH7 end of chapter problems: 7, 8, 9, 12, 17 and 29
 - Due on Wednesday, Apr. 23, in class
- Quiz number 4
 - At the beginning of the class Wednesday, Apr. 23
 - Covers up to what we finish Monday, Apr. 21

Reminder: Special project #5

- Show that the Schrodinger equation becomes Newton's second law in the classical limit. (15 points)
- Deadline Monday, Apr. 21, 2014
- You MUST have your own answers!

Ouantum Numbers

- The full solution of the radial equation requires an introduction of a quantum number, n, which is a non-zero positive integer.
- The three quantum numbers:
 - Principal quantum number – *n*
 - *l* Orbital angular momentum quantum number
 - $-m_{\rm P}$ Magnetic quantum number
- The boundary conditions put restrictions on these
 - $n = 1, 2, 3, 4, \ldots$ (n>0) Integer
 - $\ell = 0, 1, 2, 3, \ldots, n-1$ $(\ell < n)$ Integer
 - $-m_{\ell} = -\ell, -\ell + 1, \dots, 0, 1, \dots, \ell 1, \ell$ $(/m_{\ell}| \le \ell)$ Integer
- The predicted energy level is $E_n = -\frac{E_0}{m^2}$

Ex 7.3: Quantum Numbers & Degeneracy What are the possible quantum numbers for the state n=4 in atomic hydrogen? How many degenerate states are there?

n	ł	<i>m</i> _ℓ 0	
4	0		
4	1	-1, 0, +1	
4	2	-2, -1, 0, +1, +2	
4	3	-3, -2, -1, 0, +1, +2, +3	

The energy of a atomic hydrogen state is determined only by the primary quantum number, thus, all these quantum states, 1+3+5+7 = 16, are in the same energy state. Thus, there are 16 degenerate states for the state n=4.

Hydrogen Atom Radial Wave Functions

- The radial solution is specified by the values of *n* and *l*
- First few radial wave functions $R_{n\ell}$

Table 7	7.1	Hydrogen Atom Radial Wave Functions
n	l	$R_{n\ell}(r)$
1	0	$\frac{2}{(a_0)^{3/2}}e^{-r/a_0}$
2	0	$igg(2-rac{r}{a_0}igg) rac{e^{-r/2a_0}}{(2a_0)^{3/2}}$
2	1	$\frac{r}{a_0} \frac{e^{-r/2a_0}}{\sqrt{3}(2a_0)^{3/2}}$
3	0	$\frac{1}{\left(a_{0}\right)^{3/2}}\frac{2}{81\sqrt{3}}\left(27-18\frac{r}{a_{0}}+2\frac{r^{2}}{{a_{0}}^{2}}\right)e^{-r/3a_{0}}$
3	1	$rac{1}{\left(a_{0} ight)^{3/2}}rac{4}{81\sqrt{6}}igg(6-rac{r}{a_{0}}igg)rac{r}{a_{0}}e^{-r/3a_{0}}$
3	2	$\frac{1}{(a_0)^{3/2}}\frac{4}{81\sqrt{30}}\frac{r^2}{{a_0}^2}e^{-r/3a_0}$

Solution of the Angular and Azimuthal Equations

- Solutions of the azimuthal eq. are $e^{im_l\phi}$ or $e^{-im_l\phi}$
- Solutions to the angular and azimuthal equations are linked because both have m_{ℓ}
- Group these solutions together into functions

$$Y(\theta,\phi) = f(\theta)g(\phi)$$

---- spherical harmonics

Normalized Spherical Harmonics

Table 7.2	2 Normali	zed Spherical Harmonics Y($ heta, \phi$)
l	m_ℓ	$Y_{\ell m_{\ell}}$
0	0	$\frac{1}{2\sqrt{\pi}}$
1	0	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta$
1	±1	$=\frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta \ e^{\pm i\phi}$
2	0	$\frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta-1)$
2	±1	$=\frac{1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta\cos\theta\ e^{\pm i\phi}$
2	±2	$\frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta \ e^{\pm 2i\phi}$
3	0	$\frac{1}{4}\sqrt{\frac{7}{\pi}}(5\cos^3\theta-3\cos\theta)$
3	± 1	$\mp \frac{1}{8} \sqrt{\frac{21}{\pi}} \sin \theta (5 \cos^2 \theta - 1) e^{\pm i\phi}$
3	± 2	$\frac{1}{4}\sqrt{\frac{105}{2\pi}}\sin^2\theta\cos\theta\ e^{\pm 2i\phi}$
3	± 3	$\mp \frac{1}{8} \sqrt{\frac{35}{\pi}} \sin^3 \theta \ e^{\pm 3i\phi}$

Ex 7.1: Spherical Harmonic Function

Show that the spherical harmonic function Y11(θ , ϕ) satisfies the angular Schrodinger equation. $\frac{1}{d}\left(\frac{df}{\sin\theta} + \left[\frac{df}{dt}\right] + \left[\frac{m_{l}^{2}}{dt}\right]$

$$\begin{split} & \frac{\sin\theta \, d\theta}{d\theta} \left[\frac{1}{\sqrt{2\pi}} \sin^2\theta \right]^{\theta} \\ & Y_{11}(\theta,\phi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin\theta e^{i\phi} = A \sin\theta \\ & \text{Inserting } l = 1 \text{ and } m_l = 1 \text{ into the angular Schrodinger equation, we obtain} \\ & \frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dY_{11}}{d\theta} \right) + \left[1(1+1) - \frac{1}{\sin^2\theta} \right] Y_{11} = \frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dY_{11}}{d\theta} \right) + \left(2 - \frac{1}{\sin^2\theta} \right) Y_{11} \\ & = \frac{A}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\sin\theta}{d\theta} \right) + A \left(2 - \frac{1}{\sin^2\theta} \right) \sin\theta = \frac{A}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \cos\theta \right) + A \left(2 - \frac{1}{\sin^2\theta} \right) \sin\theta \\ & = \frac{A}{\sin\theta} \frac{d}{d\theta} \left(\frac{1}{2} \sin 2\theta \right) + A \left(2 - \frac{1}{\sin^2\theta} \right) \sin\theta = \frac{A}{\sin\theta} \cos 2\theta + A \left(2 - \frac{1}{\sin^2\theta} \right) \sin\theta \\ & = \frac{A}{\sin\theta} (1 - 2\sin^2\theta) + A \left(2 - \frac{1}{\sin^2\theta} \right) \sin\theta = \frac{A}{\sin\theta} - 2A\sin\theta + A \left(2 - \frac{1}{\sin^2\theta} \right) \sin\theta = 0 \end{split}$$

Solution of the Angular and Azimuthal Equations

- The radial wave function *R* and the spherical harmonics *Y* determine the probability density for the various quantum states.
- Thus the total wave function Ψ(r,θ,φ) depends on n,
 l, and m_l. The wave function can be written as

 $\psi_{nlm_{l}}(r,\theta,\phi) = R_{nl}(r)Y_{lm_{l}}(\theta,\phi)$

Orbital Angular Momentum Quantum Number **l**

- It is associated with the R(r) and f(O) parts of the wave function.
- Classically, the orbital angular momentum $\vec{L} = \vec{r} \times \vec{p}$ with $L = mv_{\text{orbital}}r$.
- l is related to the magnitude of L by $L = \sqrt{l(l+1)\hbar}$
- In an $\ell = 0$ state, $L = \sqrt{0(1)}\hbar = 0$.

It disagrees with Bohr's semi-classical "planetary" model of electrons orbiting a nucleus $L = n\hbar$.

Orbital Angular Momentum Quantum Number **l**

- A certain energy level is degenerate with respect to ℓ when the energy is independent of ℓ .
- Use letter names for the various *l* values

$$-l = 0 1 2 3 4 5...$$

- Letter = $s p d f g h...$

- Atomic states are referred by their *n* and *l*
 - s=sharp, p=principal, d=diffuse, f =fundamental, then alphabetical
- A state with n = 2 and l = 1 is called the 2p state – Is 2d state possible?
- The boundary conditions require n > l

Magnetic Quantum Number m_l

- The angle ϕ is a measure of the rotation about the z axis.
- The solution for $g(\phi)$ specifies that m_{ℓ} is an integer and related to the z component of L.

 $L_z = m_l \hbar$

- The relationship of L, L_z, l, and m_l for l = 2.
- $L = \sqrt{l(l+1)}\hbar = \sqrt{6}\hbar$ is fixed.
- Because L_z is quantized, only certain orientations of \vec{L} are possible and this is called **space quantization**.
- m_{ℓ} is called the magnetic moment since z axis is chosen customarily along the direction of magnetic field. Tuesday, Apr. 16, 2014 PHYS 3313-001, Spring 2014

 $2\hbar$ $m_{\ell} = 2$ ħ $m_{\ell} = 1$ $L = \sqrt{\ell (\ell + 1) \hbar}$ $=\sqrt{6}\hbar$ 0 $m_{\ell} = 0$ $-\hbar$ $m_\ell = -1$ $-2\hbar$ $m_\ell = -2$ 13 Dr. Jaehoon Yu

Magnetic Quantum Number m_{ℓ}

- Quantum mechanics allows \vec{L} to be quantized along only one direction in space, and because of the relationship $L^2 = L_x^2 + L_y^2 + L_z^2$, once a second component is known, the third component will also be known. \rightarrow violation of uncertainty principle
 - One of the three components, such as L_z, can be known clearly but the other components will not be precisely known
- Now, since we know there is no preferred direction,

$$\left\langle L_x^2 \right\rangle = \left\langle L_y^2 \right\rangle = \left\langle L_z^2 \right\rangle$$

• We expect the average of the angular momentum components squared to be: $\langle L^2 \rangle = 3 \langle L_z^2 \rangle = \frac{3}{2l+1} \sum_{m=-l}^{+l} m_l^2 \hbar^2 = l(l+1)\hbar^2$

Magnetic Effects on Atomic Spectra— The Normal Zeeman Effect

• A Dutch physicist Pieter Zeeman showed as early as 1896 that the spectral lines emitted by atoms in a magnetic field split into multiple energy levels. It is called the Zeeman effect.

The Normal Zeeman effect:

- A spectral line of an atom is split into three lines.
- Consider the atom to behave like a small magnet.
- The current loop has a magnetic moment $\mathbf{u} = IA$ and the period $T = 2\pi r / v$. If an electron can be considered as orbiting a circular current loop of I = dq / dt around the nucleus, we obtain

$$\mu = IA = qA/T = \pi r^{2}(-e)/(2\pi r/v) = -erv/2 = -\frac{e}{2m}mrv = -\frac{e}{2m}I$$

• $\vec{\mu} = -\frac{e}{2m}\vec{L}$ where L = mvr is the magnitude of the orbital angular momentum Tuesday, Apr. 16, 2014 PHYS 3313-001, Spring 2014 Dr. Jaeboon Yu

- If there is no magnetic field to align them, µ points in random directions.
- The dipole has a potential energy

$$V_{B} = -\vec{\mu} \cdot \vec{B}$$

• The angular momentum is aligned with the magnetic moment, and the torque between μ and B causes a precession of μ .

$$\mu_z = \frac{e}{2m}L_z = \frac{e\hbar}{2m}m_l = -\mu_B m_l$$

Where $\mu_{\rm B} = e\hbar / 2m$ is called the Bohr magneton.

• *L* cannot align exactly in the z direction and has only certain allowed quantized orientations.

• The potential energy is guantized due to the magnetic quantum number m_p.

• When a magnetic field is applied, the 2p level of atomic hydrogen is split into three different energy states with the electron energy difference of $\Delta E = \mu_{\rm B} B \Delta m_{\rm e}$.

me	Energy		
1	$E_0 + \mu_{\rm B} B$	n = 9	$\ell = 1$
0	E ₀	<i>n</i> _	
-1	$E_0 - \mu_{\rm B}B$		$\vec{B} = 0$

• So split is into a total of 2*l*+1 energy states

- A transition $\frac{m_{\ell}}{0}$ from 1s to 2p $^{-1}$
- $2p \quad \ell = 1$ Energy

• A transition from 2p to 1s

(b)

An atomic beam of particles in the *l* = 1 state pass through a magnetic field along the *z* direction. (Stern-Gerlach experiment)

$$\cdot F_z = -(dV_B/dz) = \mu_z(dB/dz)$$

- The m_ℓ = +1 state will be deflected down, the m_ℓ = −1 state up, and the m_ℓ = 0 state will be undeflected. → saw only 2 with silver atoms
- If the space quantization were due to the magnetic quantum number m_{ℓ} , the number of m_{ℓ} states is always odd at (2 ℓ + 1) and should have produced an odd number of lines. Tuesday, Apr. 16, 2014 PHYS 3313-001, Spring 2014 19

Intrinsic Spin

- In 1920, to explain spectral line splitting of Stern-Gerlach experiment, Wolfgang Pauli proposed the forth quantum number assigned to electrons
- In 1925, Samuel Goudsmit and George Uhlenbeck in Holland proposed that the <u>electron must have an intrinsic angular momentum</u> and therefore a magnetic moment.
- Paul Ehrenfest showed that the surface of the spinning electron should be moving faster than the speed of light to obtain the needed angular momentum!!
- In order to explain experimental data, Goudsmit and Uhlenbeck proposed that the electron must have an intrinsic spin quantum number $s = \frac{1}{2}$.

