PHYS 3313 – Section 001 Lecture #9

Wednesday, Feb. 18, 2015 Dr. <mark>Jae</mark>hoon <mark>Yu</mark>

- Quantization
- Discovery of the X-ray and the Electron
- Determination of Electron Charge
- Line Spectra
- Blackbody Radiation
- Photoelectric Effect

Announcements

- Reminder: Homework #2
 - CH3 end of the chapter problems: 2, 19, 27, 36, 41, 47 and 57
 - Due Wednesday, Feb. 25
- Reminder: Quiz #2 Monday, Feb. 23
 - Beginning of the class
 - Covers CH1.1 what we finish today
 - You can bring your calculator but it must not have any relevant formula pre-input
 - BYOF: You may bring a one 8.5x11.5 sheet (front and back) of handwritten formulae and values of constants for the exam
 - No derivations, word definitions, or solutions of any problems !
 - No additional formulae or values of constants will be provided!
- Colloquium today on Wind Energy... Wednesday, Feb. 18, 2015 PHYS 3313-001, Spring 2014 Dr. Jaehoon Yu

What does the word "Quantize" mean?

- Dictionary: To restrict to discrete values
- To consist of indivisible discrete quantities instead of continuous quantities
 - Integer is a quantized set with respect to real numbers
- Some examples of quantization?
 - Digital photos
 - Lego blocks
 - Electric charge
 - Photon (a quanta of light) energy
 - Angular momentum
 - Etc...

Discovery of the X Ray and the Electron

- X rays were discovered by Wilhelm Röntgen in 1895.
 - Observed X rays emitted by cathode rays bombarding glass
- Electrons were discovered by J. J. Thomson.
 - Observed that cathode rays were charged particles

Cathode Ray Experiments

- In the 1890's scientists and engineers were familiar with cathode rays, generated from one of the metal plates in an evacuated tube across a large electric potential
- People thought cathode rays had something to do with atoms.
- It was known that cathode rays could penetrate matter and their properties were under intense investigation during the 1890's.

Observation of x Rays

- Wilhelm Röntgen studied the effect of cathode rays passing through various materials.
- He noticed that a nearby phosphorescent screen glowed during some of these experiments.
- These rays were unaffected by magnetic fields and penetrated materials more than cathode rays.
- He called them **x rays** and deduced that they were produced by the cathode rays bombarding the glass walls of his vacuum tube

- Röntgen's X Ray Tube Röntgen produced the X-ray by allowing cathode rays to impact the glass wall of the tube.
- Took image the bones of a hand on a phosphorescent screen.
- Tremendous contribution to medical imaging, and Röntgen received the 1st Nobel Prize for this

J.J. Thomson's Cathode-Ray Experiment

- Thomson showed that the cathode rays were negatively charged particles (electrons)! How?
 - By deflecting them in electric and magnetic fields.

Thomson's Experiment

• Thomson measured the ratio of the electron's charge to mass by sending electrons through a region containing a magnetic field perpendicular to an electric field.

- Measure the deflection angle with only E!
- Turn on and adjust B field till no deflection!
- What do we know? • ℓ , B, E and θ
- What do we not know?
 - + $\boldsymbol{\mathcal{V}}_{0}$, q and m

Calculation of *q*/*m*

- An electron moving through the electric field w/o magnetic field is accelerated by the force: $F_v = ma_v = qE$
- Electron angle of deflection: $\tan \theta = \frac{v_y}{v_x} = \frac{a_y t}{v_0} = \frac{qE}{m} \frac{l/v_0}{v_0} = \frac{qE}{m} \frac{l}{v_0^2}$

$$\tan \theta = \frac{qE}{m} \frac{l}{v_0^2} \implies \frac{q}{m} = \frac{v_0^2 \tan \theta}{El} = \frac{\left(E/B\right)^2 \tan \theta}{El} = \frac{E \tan \theta}{B^2 l}$$

Wednesday, Feb. 18, 2015

Ex 3.1: Thomson's experiment

- In an experiment similar to Thomson's, we use deflecting plates 5.0cm in length with an electric field of 1.2x10⁴V/m. Without the magnetic field, we find an angular deflection of 30°, and with a magnetic field of 8.8x10⁻⁴T we find no deflection. What is the initial velocity of the electron and its q/m?
- First v_0 using E and B, we obtain: ۲

$$v_0 = v_x = \frac{E}{B} = \frac{1.2 \times 10^4}{8.8 \times 10^{-4}} = 1.4 \times 10^7 \, m/s$$

q/m is then

2015

$$\frac{q}{m} = \frac{E \tan \theta}{B^2 l} = \frac{1.2 \times 10^4 \tan 30^\circ}{\left(8.8 \times 10^{-4}\right)^2 \cdot 0.5} = 1.8 \times 10^{11} C/kg$$

What is the actual value of q/m using the known quantities? ٠

$$\frac{q}{m} = \frac{1.6022 \times 10^{-19}}{9.1094 \times 10^{-31}} = 1.759 \times 10^{11} C/kg$$
Wednesday, Feb. 18,
2015 PHYS 3313-001, Spring 2014
Dr. Jaehoon Yu

Determination of Electron Charge

 Millikan (and Fletcher) in 1909 measured the charge of electron and showed that the free electric charge is in multiples of the basic charge of an electron

Calculation of the oil drop charge

- Used an electric field and gravity $\vec{F}_E = q\vec{E} = -m\vec{g} \Rightarrow qV/d = mg$ to suspend a charged oil drop
- So the magnitude of the charge on the oil drop
- Mass is determined from Stokes' relationship of the terminal velocity to the radius, medium viscosity and density

$$q = \frac{mgd}{V}$$

1

$$r = 3\sqrt{\eta v_t/2g\rho}$$

$$m = \frac{4}{3}\pi r^3 \rho = \frac{4}{3}\pi \cdot 3\left(\frac{\eta v_t}{2g\rho}\right)^{\frac{3}{2}} \rho = \frac{4\pi}{\sqrt{\rho}}\left(\frac{\eta v_t}{2g}\right)^{\frac{3}{2}}$$

• Thousands of experiments showed that there is a basic quantized electron charge

 $q = 1.602 \times 10^{-19} C$

Line Spectra

- Chemical elements produce unique wavelengths of light when burned or excited in an electrical discharge.
- Collimated light is passed through a diffraction grating with thousands of ruling lines per centimeter.
 - The diffracted light is separated at an angle θ according to its wavelength λ by the equation:

$$d\sin\theta = n\lambda$$
 Diffraction maxima

where *d* is the distance between rulings and *n* is an integer called the order number (n=1 strongest)

Optical Spectrometer

- Diffraction creates a *line spectrum* pattern of light bands and dark areas on the screen.
- Chemical elements and the composition of materials can be identified through the wavelengths of these line spectra

Wednesday, Feb. 18, 2015

Balmer Series

• In 1885, Johann Balmer found an empirical formula for wavelength of the visible hydrogen line spectra in nm:

 $\lambda = 364.56 \frac{k^2}{k^2 - 4} nm$ (where k = 3, 4, 5... and k > 2)

Rydberg Equation

Several more series of hydrogen emission lines at infrared and ultraviolet wavelengths were discovered, the Balmer series equation was extended to the Rydberg equation:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n^2} - \frac{1}{k^2} \right) \quad R_H = 1.096776 \times 10^7 \, m^{-1} \, (n = 2, \, n > K)$$

Table 3.2 Hydrogen Series of Spectral Lines

Discoverer (year)	Wavelength	n	k
Lyman (1916)	Ultraviolet	1	>1
Balmer (1885)	Visible, ultraviolet	2	>2
Paschen (1908)	Infrared	3	>3
Brackett (1922)	Infrared	4	>4
Pfund (1924)	Infrared	5	>5

Quantization

- Current theories predict that charges are quantized in units (quarks) of $\pm e/3$ and $\pm 2e/3$, but quarks are not directly observed experimentally.
- The charges of particles that have been directly observed are always quantized in units of $\pm e$.
- The measured atomic weights are not continuous —they have only discrete values, which are close to integral multiples of a unit mass.

