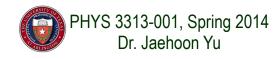
PHYS 3313 – Section 001 Lecture #13

Monday, March 23, 2015 Dr. **Jae**hoon **Yu**

- Bohr Radius
- Bohr's Hydrogen Model and Its Limitations
- Characteristic X-ray Spectra

Announcements

- Homework #3
 - End of chapter problems on CH4: 5, 14, 17, 21, 23 and 45
 - Due: Monday, March 30
- Quiz Wednesday, April 1
 - At the beginning of the class
 - Covers CH4.1 through what we finish Monday, March 30
 - BYOF with the same rule as before
- Colloquium at 4pm this Wednesday, in SH101



Uncertainties

- Statistical Uncertainty: A naturally occurring uncertainty due to the number of measurements
 - Usually estimated by taking the square root of the number of measurements or samples, \sqrt{N}
- Systematic Uncertainty: Uncertainty occurring due to unintended biases or unknown sources
 - Biases made by personal measurement habits
 - Some sources that could impact the measurements
- In any measurement, the uncertainties provide the significance to the measurement

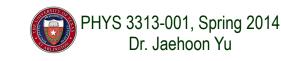
Bohr's Quantized Radius of Hydrogen

- The angular momentum is $|\vec{L}| = |\vec{r} \times \vec{p}| = mvr = n\hbar$
- So the speed of an orbiting e can be written $v_e = \frac{m}{2}$
- From the Newton's law for a circular motion

$$F_e = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} = \frac{m_e v_e^2}{r} \Longrightarrow v_e = \frac{e}{\sqrt{4\pi\varepsilon_0 m_e r}}$$

• So from above two equations, we can get

$$v_e = \frac{n\hbar}{m_e r} = \frac{e}{\sqrt{4\pi\varepsilon_0 m_e r}} \implies r = \frac{4\pi\varepsilon_0 n^2 \hbar^2}{m_e e^2}$$



m_er

Bohr Radius

• The radius of the hydrogen atom for the nth stationary state is

$$r_n = \frac{4\pi\varepsilon_0\hbar(n^2)}{m_e e^2} = a_0 n^2$$

Where the **Bohr radius** for a given stationary state is:

$$a_{0} = \frac{4\pi\varepsilon_{0}\hbar^{2}}{m_{e}e^{2}} = \frac{\left(1.055 \times 10^{-34} J \cdot s\right)^{2}}{\left(8.99 \times 10^{9} N \cdot m^{2}/C^{2}\right) \cdot \left(9.11 \times 10^{-31} kg\right) \cdot \left(1.6 \times 10^{-19} C\right)^{2}} = 0.53 \times 10^{-10} m$$

• The smallest diameter of the hydrogen atom is

$$d = 2r_1 = 2a_0 \approx 10^{-10} \, m \approx 1 \overset{\circ}{A}$$

– OMG!! The fundamental length!!

• *n* = 1 gives its lowest energy state (called the <u>"ground" state</u>)

Ex. 4.6 Justification for nonrelativistic treatment of orbital e

- Are we justified for the non-relativistic treatment of the orbital electrons?
 - When do we apply relativistic treatment?
 - When v/c>0.1
- Orbital speed: $v_e = \frac{e}{\sqrt{4\pi\varepsilon_0 m_e r}}$
- Thus

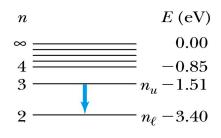
$$v_e = \frac{\left(1.6 \times 10^{-16}\right) \cdot \left(9 \times 10^9\right)}{\sqrt{\left(9.1 \times 10^{-31}\right) \cdot \left(0.5 \times 10^{-10}\right)}} \approx 2.2 \times 10^6 \left(m/s\right) < 0.01c$$

The Hydrogen Atom

• Recalling the total E of an e in an atom, the nth stationary states En

$$E_{n} = -\frac{e^{2}}{8\pi\varepsilon_{0}r_{n}} = -\frac{e^{2}}{8\pi\varepsilon_{0}a_{0}n^{2}} = -\frac{E_{1}}{n^{2}} \qquad E_{0} = -\frac{e^{2}}{8\pi\varepsilon_{0}a_{0}} = \frac{-(8.99 \times 10^{9} N \cdot m^{2}/C^{2}) \cdot (1.6 \times 10^{-19} C)^{2}}{2(0.53 \times 10^{-10} m)} = -13.6eV$$

where E_0 is the ground state energy



Emission of light occurs when the atom is in an excited state and decays to a lower energy state $(n_u \rightarrow n_l)$.

$$hf = E_u - E_l$$

Energy

where *f* is the frequency of a photon.

$$\frac{1}{\lambda} = \frac{f}{c} = \frac{E_u - E_l}{hc} = \frac{E_0}{hc} \left(\frac{1}{n_l^2} - \frac{1}{n_u^2}\right) = R_{\infty} \left(\frac{1}{n_l^2} - \frac{1}{n_u^2}\right)$$

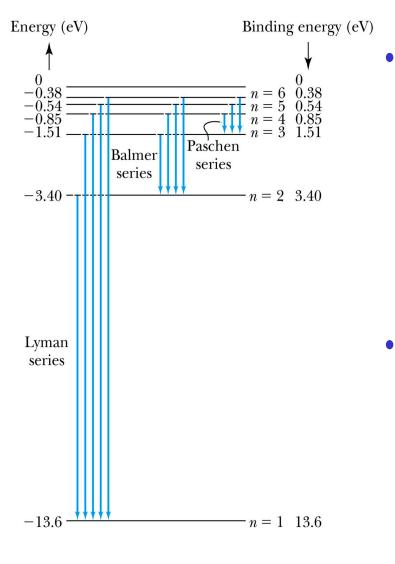
 R_{∞} is the **Rydberg constant**. $R_{\infty} = E_0/hc$

1 _____ -13.6

Monday, March 23, 2015

PHYS 3313-001, Spring 2014 Dr. Jaehoon Yu

Transitions in the Hydrogen Atom



Lyman series: The atom will remain in the excited state for a short time before emitting a photon and returning to a lower stationary state. All hydrogen atoms exist in n = 1 (invisible).

• **Balmer series:** When sunlight passes through the atmosphere, hydrogen atoms in water vapor absorb the wavelengths (visible).

Fine Structure Constant

• The electron's speed on an orbit in the Bohr model:

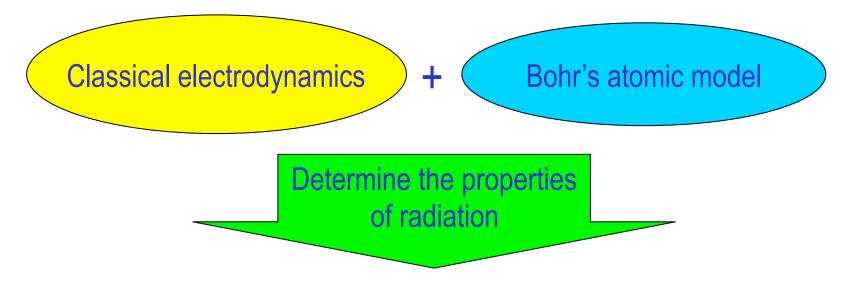
$$v_e = \frac{n\hbar}{m_e r_n} = \frac{n\hbar}{m_e \frac{4\pi\varepsilon_0 n^2\hbar^2}{m_e e^2}} = \frac{1}{n} \frac{e^2}{4\pi\varepsilon_0 \hbar}$$

- On the ground state, v₁ = 2.2 × 10⁶ m/s ~ less than 1% of the speed of light
- The ratio of v_1 to c is the fine structure constant, α .

$$\alpha \equiv \frac{v_1}{c} = \frac{\hbar}{ma_0 c} = \frac{e^2}{4\pi\epsilon_0 \hbar c} = \frac{e^2}{4\pi\epsilon_0 \hbar c} = \frac{(8.99 \times 10^9 \, N \cdot m^2/C^2) \cdot (1.6 \times 10^{-19} \, C)^2}{(1.055 \times 10^{-34} \, J \cdot s) \cdot (3 \times 10^8 \, m/s)} \approx \frac{1}{137}$$

Monday, March 23, 2015

The Correspondence Principle



Need a principle to relate the new modern results with classical ones.

In the limits where classical and quantum theories should agree, the quantum theory must produce the classical results.

The Correspondence Principle

The frequency of the radiation emitted $f_{\text{classical}}$ is equal to the orbital frequency $f_{\rm orb}$ of the electron around the nucleus. 1 10

$$f_{classical} = f_{obs} = \frac{\omega}{2\pi} = \frac{1}{2\pi} \frac{v}{r} = \frac{1}{2\pi r} \frac{e}{\sqrt{4\pi\varepsilon_0 m_e r}} = \frac{1}{2\pi} \left(\frac{e^2}{4\pi\varepsilon_0 m_e r^3}\right)^{1/2} = \frac{m_e e^4}{4\varepsilon_0^2 h^3} \frac{1}{n^3}$$

The frequency of the photon in the transition from *n* + 1 to *n* is ۲

$$f_{Bohr} = \frac{E_0}{h} \left(\frac{1}{(n)^2} - \frac{1}{(n+1)^2} \right) = \frac{E_0}{h} \frac{n^2 + 2n + 1 - n^2}{n^2 (n+1)^2} = \frac{E_0}{h} \left[\frac{2n + 1}{n^2 (n+1)^2} \right]$$

• For large *n* the classical limit,

$$f_{Bohr} \approx \frac{2nE_0}{hn^4} = \frac{2E_0}{hn^3}$$
Substitute E_0 :

$$f_{Bohr} = \frac{2E_0}{hn^3} = \frac{2}{hn^3} \left(\frac{e^2}{8\pi\epsilon_0 a_0}\right) = \frac{m_e e^4}{4\epsilon_0^2 h^3} \frac{1}{n^3} = f_{Classical}$$

So the frequency of the radiated E between classical theory and Bohr model agrees in large n case!!

Importance of Bohr's Model

- Demonstrated the need for Plank's constant in understanding the atomic structure
- Assumption of quantized angular momentum which led to quantization of other quantities, r, v and E as follows
- Orbital Radius:

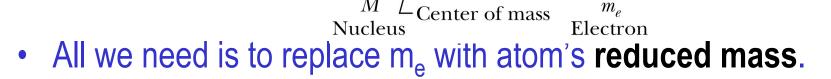
$$r_n = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2}n^2 = a_0n^2$$

• Orbital Speed:

$$v = \frac{n\hbar}{mr_n} = \frac{\hbar}{ma_0 n}$$
$$E_n = \frac{e^2}{8\pi\varepsilon_0 a_0 n^2} = \frac{E_0}{n^2}$$

Successes and Failures of the Bohr Model

 The electron and hydrogen nucleus actually revolve about their mutual center of mass → reduced mass correction!!



$$\mu_e = \frac{m_e M}{m_e + M} = \frac{m_e}{1 + m_e/M}$$

• The Rydberg constant for infinite nuclear mass, R_{∞} is replaced by *R*. $\mu_{e}e^{4}$

$$R = \frac{\mu_e}{m_e} R_{\infty} = \frac{1}{1 + m_e/M} R_{\infty} = \frac{\mu_e e^4}{4\pi c\hbar^3 (4\pi \varepsilon_0)^2}$$

Monday, March 23, 2015

For H: $R_{H} = 1.096776 \times 10^{7} m^{-1}$

Limitations of the Bohr Model

- The Bohr model was a great step of the new quantum theory, but it had its limitations.
- 1) Works only to single-electron atoms
 - Works even for ions \rightarrow What would change?
 - The charge of the nucleus $\frac{1}{\lambda} = Z^2 R \left(\frac{1}{n_1^2} \frac{1}{n^2} \right)$
- 2) Could not account for the intensities or the fine structure of the spectral lines
 - Fine structure is caused by the electron spin
 - Under a magnetic field, the spectrum splits by the spin
- 3) Could not explain the binding of atoms into molecules

