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PHYS 3313 – Section 001 
Lecture #15 

Monday, March 30, 2015 
Dr. Jaehoon Yu 

•  Wave Motion and Properties 
•  Wave Packets and Packet Envelops 
•  Superposition of Waves 
•  Electron Double Slit Experiment 
•  Wave-Particle Duality 
•  The Uncertainty Principle 
•  The Schrodinger Wave Equation 
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Announcements 
•  Quiz this Wednesday, April 1 

–  At the beginning of the class 
–  Covers CH4.1 through what we finish Monday, March 30 
–  BYOF with the same rule as before 

•  Colloquium at 4pm Wednesday, in SH101 



n  de Broglie matter waves suggest a further description. 
The displacement of a traveling wave is 

 
n  This is a solution to the wave equation 

n  Define the wave number k and the angular frequency ω 
as: 

n  The wave function can be rewritten: 

Wave Motion 
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Ψ x,t( ) = Asin 2π
λ

x − vt( )⎡
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⎤
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∂2Ψ
∂x2

= 1
v2

∂2Ψ
∂t 2

k ≡ 2π
λ

  and 

Ψ x,t( ) =

ω = 2π
T λ = vT

Asin kx −ωt[ ]



Wave Properties 
•  The phase velocity is the velocity of a point on the 

wave that has a given phase (for example, the crest) 
and is given by 

 
•  The phase constant φ shifts the wave: 

        . 
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vph =
λ
T
= λ
2π
2π
T

= ω
k

Ψ x,t( ) = Asin kx −ωt +φ[ ]
= Acos kx −ωt[ ]

(When φ=π/2) 



Principle of Superposition 
•  When two or more waves traverse the same region, they act 

independently of each other.  
•  Combining two waves of the same amplitude yields: 

 

•  The combined wave oscillates within an envelope that 
denotes the maximum displacement of the combined waves. 

•  When combining many waves with different amplitudes and 
frequencies, a pulse, or wave packet, can be formed, which 
can move at a group velocity:                 

  

Ψ x,t( ) =

ugr =
Δω
Δk
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Fourier Series 
•  The sum of many waves that form a wave packet is 

called a Fourier series: 

•  Summing an infinite number of waves yields the 
Fourier integral: 
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Ψ x,t( ) = Ai sin kix −ω it[ ]
i
∑

 
Ψ x,t( ) = A k( )cos kx −ωt[ ]∫ dk



Wave Packet Envelope 
•  The superposition of two waves yields a wave number and angular 

frequency of the wave packet envelope. 
 
 
•  The range of wave numbers and angular frequencies that produce the 

wave packet have the following relations: 
 
 
•  A Gaussian wave packet has similar relations: 

 
•  The localization of the wave packet over a small region to describe a 

particle requires a large range of wave numbers. Conversely, a small 
range of wave numbers cannot produce a wave packet localized within 
a small distance.  
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n  A Gaussian wave packet describes the envelope of a pulse 
wave. 

 
 
 
 
 
 
 
 
n  The group velocity is    

Gaussian Function 
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Ψ x,0( ) = Ψ x( ) = Ae−Δk2x2 cos k0x( )

ugr =
dω
dk



Dispersion 
n Considering the group velocity of a de Broglie wave packet 

yields: 

        
n The relationship between the phase velocity and the group 

velocity is     
 
n Hence the group velocity may be greater or less than the 

phase velocity. A medium is called nondispersive when the 
phase velocity is the same for all frequencies and equal to 
the group velocity.      

  
Monday, March 30, 2015 9 PHYS 3313-001, Spring 2015                      

Dr. Jaehoon Yu 

ugr =
dω
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=
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d
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E



Waves or Particles? 
n Young’s double-slit diffraction 

experiment demonstrates the wave 
property of light. 

n However, dimming the light results 
in single flashes on the screen 
representative of particles. 
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Electron Double-Slit Experiment 
n  C. Jönsson of Tübingen, 

Germany, succeeded in 1961 
in showing double-slit 
interference effects for 
electrons by constructing very 
narrow slits and using 
relatively large distances 
between the slits and the 
observation screen. 

n  This experiment demonstrated 
that precisely the same 
behavior occurs for both light 
(waves) and electrons 
(particles). 
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Wave particle duality solution 
•  The solution to the wave particle duality of an event 

is given by the following principle. 
•  Bohr’s principle of complementarity: It is not 

possible to describe physical observables 
simultaneously in terms of both particles and waves. 

•  Physical observables are the quantities such as 
position, velocity, momentum, and energy that can 
be experimentally measured. In any given instance 
we must use either the particle description or the 
wave description. 
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Uncertainty Principles 
•  It is impossible to measure simultaneously, with no 

uncertainty, the precise values of k and x for the same 
particle. The wave number k may be rewritten as 

•  For the case of a Gaussian wave packet we have 
 
 

 Thus for a single particle, we have Heisenberg’s uncertainty 
principle: 
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k =
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Probability, Wave Functions, and the Copenhagen 
Interpretation 

•  The wave function determines the likelihood (or probability) 
of finding a particle at a particular position in space at a 
given time. 

•  The total probability of finding the particle is 1. Forcing this 
condition on the wave function is called normalization.  
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P y( )dy = Ψ y,t( )2 dy

P y( )dy
−∞

+∞

∫ = Ψ y,t( )2 dy
−∞

+∞

∫ = 1



The Copenhagen Interpretation 
•  Bohr’s interpretation of the wave function consisted 

of 3 principles: 
1)  The uncertainty principle of Heisenberg 
2)  The complementarity principle of Bohr 
3)  The statistical interpretation of Born, based on probabilities 

determined by the wave function 

•  Together these three concepts form a logical 
interpretation of the physical meaning of quantum 
theory. According to the Copenhagen interpretation, 
physics depends on the outcomes of measurement. 
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Particle in a Box 
•  A particle of mass m is trapped in a one-dimensional box of width l. 

•  The particle is treated as a wave.  
•  The box puts boundary conditions on the wave. The wave function must be zero at the walls of 

the box and on the outside. 
•  In order for the probability to vanish at the walls, we must have an integral number of half 

wavelengths in the box. 

–                                                                             or 

•  The energy of the particle is      . 

•  The possible wavelengths are quantized which yields the energy: 

•  The possible energies of the particle are quantized. 
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Probability of the Particle 
•  The probability of 

observing the particle 
between x and x + dx in 
each state is 

 
•  Note that E0 = 0 is not a 

possible energy level. 
•  The concept of energy 

levels, as first discussed 
in the Bohr model, has 
surfaced in a natural 
way by using waves. 
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Pndx ∝ Ψn x( ) 2 dx



The Schrödinger Wave Equation 
•  The Schrödinger wave equation in its time-dependent 

form for a particle of energy E moving in a potential V in 
one dimension is 

 

•  The extension into three dimensions is 

•  where       is an imaginary number 
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General Solution of the Schrödinger Wave 
Equation 

•  The general form of the solution of the Schrödinger wave 
equation is given by: 

•  which also describes a wave moving in the x direction. In 
general the amplitude may also be complex. This is called the 
wave function of the particle. 

•  The wave function is also not restricted to being real. Notice 
that the sine term has an imaginary number. Only the 
physically measurable quantities must be real. These include 
the probability, momentum and energy. 
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Ψ x,t( ) = Aei kx−ωt( ) = A cos kx −ωt( ) + isin kx −ωt( )⎡⎣ ⎤⎦



Normalization and Probability 
•  The probability P(x) dx of a particle being between x 

and X + dx was given in the equation 

•  Here Ψ* denotes the complex conjugate of Ψ      
•  The probability of the particle being between x1 and x2 

is given by 
 
•  The wave function must also be normalized so that the 

probability of the particle being somewhere on the x 
axis is 1. 
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P x( )dx = Ψ* x,t( )Ψ x,t( )dx
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