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PHYS 3313 – Section 001 
Lecture # 22 

Wednesday, April 22, 2015 
Dr. Barry Spurlock 

•  Simple Harmonic Oscillator 
•  Barriers and Tunneling 
•  Alpha Particle Decay 
•  Schrodinger Equation on Hydrogen Atom 
•  Solutions for Schrodinger Equation for 

Hydrogen Atom 
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Announcements 
•  Research paper deadline is Monday, May 4 
•  Research presentation deadline is Sunday, May 3 
•  Bring out Homework #5 
•  Reminder Homework #6 

–  CH7 end of chapter problems: 7, 8, 9, 12, 17 and 29 
–  Due on Wednesday, Apr. 29, in class  

•  Reading assignments 
–  CH7.6 and the entire CH8 

•  Quiz number 5 
–  At the beginning of the class Wednesday, Apr. 29 
–  Covers up to what we finish Monday, Apr. 27 



The Simple Harmonic Oscillator 
•  Simple harmonic oscillators describe many physical situations: springs, diatomic molecules 

and atomic lattices.   

•  Consider the Taylor expansion of a potential function: 

 The minimum potential at x=x0, so dV/dx=0 and V1=0; and the zero potential V0=0, we 
have 

 Substituting this into the wave equation: 

   
 Let              and    which yields     . 
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V x( ) =V0 +V1 x − x0( ) + 1

2
V2 x − x0( )2 +

V x( ) = 1
2
V2 x − x0( )2

 

d 2ψ
dx2

= − 2m
2

E −κ x
2

2
⎛
⎝⎜

⎞
⎠⎟
ψ =

 
α 2 = mκ

2  
β = 2mE

2
d 2ψ
dx2

= α 2x2 − β( )ψ
 
− 2m
2

E + mκ x
2

2
⎛
⎝⎜

⎞
⎠⎟
ψ

F = −κ x − x0( )



Parabolic Potential Well 

•  If the lowest energy level is zero, this violates the uncertainty principle. 
•  The wave function solutions are               where Hn(x) are Hermite 

polynomial function of order n. 
•  In contrast to the particle in a box, where the oscillatory wave function is a sinusoidal 

curve, in this case the oscillatory behavior is due to the polynomial, which dominates 
at small x. The exponential tail is provided by the Gaussian function, which 
dominates at large x. 
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ψ n = Hn x( )e−αx2 2



Analysis of the Parabolic Potential Well 

•  The energy levels are given by 

•  The zero point energy is called the Heisenberg limit: 

•  Classically, the probability of finding the mass is 
greatest at the ends of motion’s range and smallest at 
the center (that is, proportional to the amount of time 
the mass spends at each position). 

•  Contrary to the classical one, the largest probability for 
this lowest energy state is for the particle to be at the 
center. 
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En = n + 1

2
⎛
⎝⎜

⎞
⎠⎟  κ m =

 
E0 =

1
2
ω

 
n + 1

2
⎛
⎝⎜

⎞
⎠⎟ ω



Ex. 6.12: Harmonic Oscillator stuff 
•  Normalize the ground state wave function ψ0 for the 

simple harmonic oscillator and find the expectation 
values <x> and <x2>. 
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ψ
0

*ψ 0 dx−∞

+∞

∫ = A2e−αx
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−∞
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+∞
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⎛
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⎞
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⎞
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⎞
⎠⎟
1 4

⇒ψ 0 x( ) = α
π

⎛
⎝⎜

⎞
⎠⎟
1 4

e−αx
2 2

x = ψ
0

*xψ 0 dx−∞

+∞
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+∞
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−∞

+∞

∫ = 2 α
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+∞
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π
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⎝⎜
⎞
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x2 = 

2 mκ
⇒ω = κ m ⇒ x2 = 

2mω

ψ n x( ) = Hn x( )e−αx2 2 ⇒ψ 0 x( ) = H0 x( )e−αx2 2 = Ae−αx2 2



Barriers and Tunneling 
•  Consider a particle of energy E approaching a potential barrier of height V0 and the 

potential everywhere else is zero. 
•  We will first consider the case when the energy is greater than the potential barrier. 
•  In regions I and III the wave numbers are: 

•  In the barrier region we have 
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kI = kIII =

2mE


 
kII =

2m E −V0( )


     where V =V0



Reflection and Transmission 
•  The wave function will consist of an incident wave, a reflected wave, and a 

transmitted wave. 
•  The potentials and the Schrödinger wave equation for the three regions are as 

follows: 
 
 
 
 
•  The corresponding solutions are: 
 
 
•  As the wave moves from left to right, we can simplify the wave functions to: 
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Region I x < 0( )           V = 0            d

2ψ I

dx2 + 2m
2 Eψ I = 0

Region I x < 0( )           ψ I = Ae
ikI x + Be− ikI x

Incident wave          ψ I (incident) = AeikI x

 
Region II 0 < x < L( )   V =V0            d

2ψ II

dx2 + 2m
2 E −V0( )ψ II = 0

 
Region III x > L( )         V = 0             d

2ψ III

dx2 + 2m
2 Eψ III = 0

Region II 0 < x < L( )   ψ II = Ce
ikII x + De− ikII x

Region III x > L( )         ψ III = Fe
ikI x +Ge− ikI x

Reflected wave       ψ I (reflected) = Be− ikI x

Transmitted wave   ψ III (transmitted) = FeikI x



Probability of Reflection and Transmission 
•  The probability of the particles being reflected R or transmitted T is: 

•  The maximum kinetic energy of the photoelectrons depends on the value 
of the light frequency f and not on the intensity. 

•  Because the particles must be either reflected or transmitted we have:  R 
+ T = 1 

•  By applying the boundary conditions x → ±∞, x = 0, and x = L, we arrive 
at the transmission probability: 

•  When does the transmission probability become 1? 
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R=
ψ I (reflected) 2

ψ I (incident) 2  =

T=
ψ III (transmitted) 2

ψ I (incident) 2  =

B ⋅B
A ⋅A

F ⋅F
A ⋅A

T= 1+
V0
2 sin2 kII L( )
4E E −V0( )

⎡

⎣
⎢

⎤

⎦
⎥

−1



Tunneling 
•  Now we consider the situation where classically the particle does not have enough energy to 

surmount the potential barrier, E < V0. 

 
 
 
 
 
 
 

•  The quantum mechanical result, however, is one of the most remarkable features of modern 
physics, and there is ample experimental proof of its existence. There is a small, but finite, 
probability that the particle can penetrate the barrier and even emerge on the other side. 

•  The wave function in region II becomes 
 
•  The transmission probability that  

describes the phenomenon of tunneling is 
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T= 1+ V0
2 sinh2 κ L( )
4E V0 − E( )

⎡

⎣
⎢

⎤

⎦
⎥

−1
 
where κ =

2m V0 − E( )


ψ II = Ce
κ x + De−κ x



Uncertainty Explanation 
•  Consider when κL >> 1 then the transmission probability becomes: 

•  This violation allowed by the uncertainty principle is equal to the negative kinetic 
energy required! The particle is allowed by quantum mechanics and the uncertainty 
principle to penetrate into a classically forbidden region. The minimum such kinetic 
energy is: 
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T=16 E
V0

1− E
V0

⎛
⎝⎜

⎞
⎠⎟
e−2κ L

Kmin =
Δp( )2
2m

= π 2κ 2

2m
= V0 − E



Analogy with Wave Optics 
•  If light passing through a glass prism reflects from an internal surface with an angle greater 

than the critical angle, total internal reflection occurs. The electromagnetic field, however, is 
not exactly zero just outside the prism. Thus, if we bring another prism very close to the first 
one, experiments show that the electromagnetic wave (light) appears in the second prism.   

•  The situation is analogous to the tunneling described here. This effect was observed by 
Newton and can be demonstrated with two prisms and a laser. The intensity of the second 
light beam decreases exponentially as the distance between the two prisms increases. 
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Potential Well 

•  Consider a particle passing through a potential well region rather than through a potential 
barrier. 

•  Classically, the particle would speed up passing the well region, because K = mv2 / 2 = E - V0. 
 According to quantum mechanics, reflection and transmission may occur, but the wavelength 
inside the potential well is shorter than outside. When the width of the potential well is 
precisely equal to half-integral or integral units of the wavelength, the reflected waves may be 
out of phase or in phase with the original wave, and cancellations or resonances may occur. 
The reflection/cancellation effects can lead to almost pure transmission or pure reflection for 
certain wavelengths. For example, at the second boundary (x = L) for a wave passing to the 
right, the wave may reflect and be out of phase with the incident wave. The effect would be a 
cancellation inside the well. 
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Alpha-Particle Decay 
•  May nuclei heavier than Pb emits alpha particles (nucleus of He)! The phenomenon 

of tunneling explains the alpha-particle decay of heavy, radioactive nuclei. 
•  Inside the nucleus, an alpha particle feels the strong, short-range attractive nuclear 

force as well as the repulsive Coulomb force. 
•  The nuclear force dominates inside the nuclear radius where the potential is 

approximately a square well. 
•  The Coulomb force dominates  

outside the nuclear radius. 
•  The potential barrier at the nuclear  

radius is several times greater than  
the energy of an alpha particle (~5MeV). 

•  According to quantum mechanics,  
however, the alpha particle can  
“tunnel” through the barrier. Hence  
this is observed as radioactive decay. 
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Application of the Schrödinger Equation to the 
Hydrogen Atom 

•  The approximation of the potential energy of the electron-
proton system is the Coulomb potential:  

•  To solve this problem, we use the three-dimensional time-
independent Schrödinger Equation. 

 
•  For Hydrogen-like atoms with one electron (He+ or Li++) 

•  Replace e2 with Ze2 (Z is the atomic number) 
•  Use appropriate reduced mass µ	
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V r( ) = e2

4πε0r
−

 
− 

2

2m
1

ψ x, y, z( )
∂2ψ x, y, z( )

∂x2
+
∂2ψ x, y, z( )

∂y2
+
∂2ψ x, y, z( )

∂z2
⎛
⎝⎜

⎞
⎠⎟
= E −V r( )

µ = m1m2

m1 +m2

⎛
⎝⎜

⎞
⎠⎟



Application of the Schrödinger Equation 
n The potential (central force) V(r) depends on the distance r 

between the proton and electron. 
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1
r2

∂
∂r

r2 ∂ψ
∂r

⎛
⎝⎜

⎞
⎠⎟
+

1
r2 sinθ

∂
∂θ

sinθ ∂ψ
∂θ

⎛
⎝⎜

⎞
⎠⎟
+

1
r2 sin2θ

∂2ψ
∂φ 2

+
2µ
2

E −V( )ψ = 0

x = r sinθ cosφ •  Transform to spherical polar 
coordinates to exploit the radial 
symmetry. 

•  Insert the Coulomb potential into 
the transformed Schrödinger 
equation. 

y = r sinθ sinφ
z = r cosθ

r = x2 + y2 + z2

θ = cos−1 z
r

polar angle( )

φ = tan−1 y
x

azimuthal angle( )



Application of the Schrödinger Equation 

•  The wave function ψ is a function of r, θ and φ . 
  The equation is separable into three equations of 
independent variables 

  The solution may be a product of three functions. 

•  We can separate the Schrodinger equation in polar 
coordinate into three separate differential equations, each 
depending only on one coordinate: r, θ, or φ . 
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ψ r,θ,φ( ) = R r( ) f θ( )g φ( )



Solution of the Schrödinger Equation 
•  Only r and θ appear on the left-hand side and only φ  appears 

on the right-hand side of the equation 
•  The left-hand side of the equation cannot change as φ  

changes. 
•  The right-hand side cannot change with either r or θ. 
•  Each side needs to be equal to a constant for the equation to 

be true in all cases.  Set the constant −mℓ
2 equal to the right-

hand side of the reorganized equation 
 

–  The sign in this equation must be negative for a valid solution  
•  It is convenient to choose a solution to be          . 

-------- azimuthal equation 
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d 2g
dφ 2

= −ml
2g

eimlφ



Solution of the Schrödinger Equation for Hydrogen 
•  Substitute ψ into the polar Schrodinger equation and separate the 

resulting equation into three equations: R(r), f(θ), and g(φ). 
Separation of Variables 
•  The derivatives in Schrodinger eq. can be written as 
 
•  Substituting them into the polar coord. Schrodinger Eq. 

•  Multiply both sides by r2 sin2 θ / Rfg 
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∂ψ
∂r

= fg ∂R
∂r

 

fg
r2

∂
∂r

r2 ∂R
∂r

⎛
⎝⎜

⎞
⎠⎟
+

Rg
r2 sinθ

∂
∂θ

sinθ ∂f
∂θ

⎛
⎝⎜

⎞
⎠⎟
+

Rf
r2 sin2θ

∂2g
∂φ 2

+
2µ
2

E −V( )Rgf = 0

 

sin2θ
R

∂
∂r

r2 ∂R
∂r

⎛
⎝⎜

⎞
⎠⎟
+
sinθ
f

∂
∂θ

sinθ ∂f
∂θ

⎛
⎝⎜

⎞
⎠⎟
+
1
g
∂2g
∂φ 2

+
2µ
2

r2 sin2θ E −V( ) = 0

 
−
sin2θ
R

∂
∂r

r2 ∂R
∂r

⎛
⎝⎜

⎞
⎠⎟
−
2µ
2

r2 sin2θ E −V( ) − sinθ
f

∂
∂θ

sinθ ∂f
∂θ

⎛
⎝⎜

⎞
⎠⎟
=
1
g
∂2g
∂φ 2Reorganize 

∂ψ
∂θ

= Rg ∂f
∂θ

∂2ψ
∂φ 2

= Rf ∂
2g

∂φ 2



Solution of the Schrödinger Equation 
•     satisfies the previous equation for any value of mℓ. 
•  The solution be single valued in order to have a valid solution for 

any φ, which requires 

•  mℓ must be zero or an integer (positive or negative) for this to work 
•  Now, set the remaining equation equal to −mℓ

2 and divide either 
side with sin2θ and rearrange them as  

 
 
•  Everything depends on r on the left side and θ on the right side of 

the equation. 
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eimlφ

g φ( ) = g φ + 2π( )
g φ = 0( ) = g φ = 2π( ) e0 = e2π iml

 

1
R

∂
∂r

r2 ∂R
∂r

⎛
⎝⎜

⎞
⎠⎟
+
2µr2

2
E −V( ) = ml

2

sin2θ
−

1
f sinθ

∂
∂θ

sinθ ∂f
∂θ

⎛
⎝⎜

⎞
⎠⎟



Solution of the Schrödinger Equation 
•  Set each side of the equation equal to constant ℓ(ℓ + 1). 

–  Radial Equation 

–  Angular Equation 

 
•  Schrödinger equation has been separated into three ordinary 

second-order differential equations, each containing only one 
variable. 
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1
R

∂
∂r

r2 ∂R
∂r

⎛
⎝⎜

⎞
⎠⎟
+
2µr2

2
E −V( ) = l l +1( )⇒

ml
2

sin
2
θ
− 1
f sinθ

∂
∂θ

sinθ ∂ f
∂θ

⎛
⎝⎜

⎞
⎠⎟ = l l +1( )⇒

 

1
r2

d
dr

r2 dR
dr

⎛
⎝⎜

⎞
⎠⎟
+
2µ
2

E −V −
2

2µ
l l +1( )⎡

⎣
⎢

⎤

⎦
⎥R = 0

1
sinθ

d
dθ

sinθ df
dθ

⎛
⎝⎜

⎞
⎠⎟
+ l l +1( ) − ml

2

sin2θ
⎡

⎣
⎢

⎤

⎦
⎥ f = 0



Solution of the Radial Equation 
•  The radial equation is called the associated Laguerre 

equation, and the solutions R that satisfies the appropriate 
boundary conditions are called associated Laguerre 
functions. 

•  Assume the ground state has ℓ = 0, and this requires mℓ = 0. 
 We obtain 

 

•  The derivative of             yields two terms, and we obtain 

Wednesday, April 22, 
2015 

22 PHYS 3313-001, Spring 2015                     
Dr. Jaehoon Yu 

 

1
r2

d
dr

r2 dR
dr

⎛
⎝⎜

⎞
⎠⎟
+
2µ
2

E −V[ ]R = 0

 

d 2R
dr2

+
2
r
dR
dr

+
2µ
2

E +
e2

4πε0r
⎛
⎝⎜

⎞
⎠⎟
R = 0

r2 dR
dr



Solution of the Radial Equation 
•  Let’s try a solution                     where A is a normalization constant, 

and a0 is a constant with the dimension of length. 
•  Take derivatives of R, we obtain. 
 
 
 
•  To satisfy this equation for any r, each of the two expressions in 

parentheses must be zero. 
•  Set the second parentheses equal to zero and solve for a0. 

•  Set the first parentheses equal to zero and solve for E. 

•  Both equal to the Bohr’s results 
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R = Ae−r a0

 

1
a0
2 +

2µ
2

E
⎛
⎝⎜

⎞
⎠⎟
+

2µe2

4πε0
2 −

2
a0

⎛
⎝⎜

⎞
⎠⎟
1
r
= 0

 
a0 =

4πε0
2

µe2

E =

Bohr’s radius 

Ground state energy 
of the hydrogen atom  

−E0 = −13.6eV
 
−
2

2µa0
2 =



Principal Quantum Number n 
•  The principal quantum number, n, results from the 

solution of R(r) in the separate Schrodinger Eq. since 
R(r) includes the potential energy V(r). 

 The result for this quantized energy is 

•  The negative sign of the energy E indicates that the 
electron and proton are bound together. 
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En =
 
− µ
2

e2

4πε0
⎛
⎝⎜

⎞
⎠⎟

2
1
n2

= − E0
n2



Quantum Numbers 
•  The full solution of the radial equation requires an 

introduction of a quantum number, n, which is a non-zero 
positive integer. 

•  The three quantum numbers: 
–  n  Principal quantum number 
–  ℓ  Orbital angular momentum quantum number 
–  mℓ  Magnetic quantum number 

•  The boundary conditions put restrictions on these 
–  n = 1, 2, 3, 4, . . .     (n>0)    Integer 
–  ℓ = 0, 1, 2, 3, . . . , n − 1    (ℓ < n)    Integer 
–  mℓ = −ℓ, −ℓ + 1, . . . , 0, 1, . . . , ℓ − 1, ℓ  (|mℓ| ≤ ℓ) Integer 

•  The predicted energy level is 
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En = −
E0
n2



What are the possible quantum numbers for the state n=4 in 
atomic hydrogen?  How many degenerate states are there? 

Ex 7.3: Quantum Numbers & Degeneracy 
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  n   ℓ   mℓ   
  4   0   0 
  4   1         -1, 0, +1 
  4   2    -2, -1, 0, +1, +2 
  4   3      -3, -2, -1, 0, +1, +2, +3 

The energy of a atomic hydrogen state is determined only by the 
primary quantum number, thus, all these quantum states, 
1+3+5+7 = 16, are in the same energy state.  
Thus, there are 16 degenerate states for the state n=4. 


