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PHYS 3313 – Section 001 
Lecture # 23 

Monday, April 27, 2015 
Dr. Barry Spurlock 

•  Hydrogen Atom Wave Functions 
•  Solution for Angular and Azimuthal Equations 
•  Angular Momentum Quantum Numbers 
•  Magnetic Quantum Numbers 
•  Zeeman Effects 
•  Equipartition Theorem 
•  Quantum Distributions 
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Announcements 
•  Research paper deadline is Monday, May 4 
•  Research presentation deadline is 8pm, Sunday, May 3 
•  Reminder Homework #6 

–  CH7 end of chapter problems: 7, 8, 9, 12, 17 and 29 
–  Due on Wednesday, Apr. 29, in class  

•  Reading assignments 
–  CH7.6 and the entire CH8 

•  Quiz number 5 
–  At the beginning of the class Wednesday, Apr. 29 
–  Covers up to what we finish Monday, Apr. 27 
–  Bring Your Own Formula sheet 

•  Final comprehensive exam 11am – 1:30pm, Monday, May 11 



Hydrogen Atom Radial Wave Functions 
•  The radial solution is specified by the values of n and ℓ 
•  First few radial wave functions Rnℓ 
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Solution of the Angular and 
Azimuthal Equations 

•  The solutions for azimuthal eq. are        or   
•  Solutions to the angular and azimuthal 

equations are linked because both have mℓ 
•  Group these solutions together into functions 

---- spherical harmonics 
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Y θ,φ( ) = f θ( )g φ( )

eimlφ e− imlφ



Normalized Spherical Harmonics 
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Show that the spherical harmonic function Y11(θ,φ) satisfies the angular 
Schrodinger equation.  

Ex 7.1: Spherical Harmonic Function 
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Solution of the Angular and Azimuthal Equations 

•  The radial wave function R and the spherical 
harmonics Y determine the probability density for 
the various quantum states.  

•  Thus the total wave function ψ(r,θ,φ) depends on n, 
ℓ, and mℓ. The wave function can be written as  
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ψ nlml
r,θ ,φ( ) = Rnl r( )Ylml

θ ,φ( )



Orbital Angular Momentum Quantum Number ℓ 
•  It is associated with the R(r) and f(θ) parts of the wave 

function.  
•  Classically, the orbital angular momentum       with 

L = mvorbitalr.  
•  ℓ is related to the magnitude of L by       . 
•  In an ℓ = 0 state,         . 
 
 

 It disagrees with Bohr’s semi-classical “planetary” model of 
electrons orbiting a nucleus L = nħ. 
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Orbital Angular Momentum Quantum Number ℓ 
•  Certain energy level is degenerate with respect to 

ℓ when the energy is independent of ℓ. 
•  Use letter names for the various ℓ values 

–  ℓ =   0  1  2  3  4  5 . . . 
– Letter =  s  p  d  f  g  h . . . 

•  Atomic states are referred by their n and ℓ 
–  s=sharp, p=principal, d=diffuse, f =fundamental, then 

alphabetical  
•  A state with n = 2 and ℓ = 1 is called the 2p state 

–  Is 2d state possible? 
•  The boundary conditions require n > ℓ 
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•  The relationship of L, Lz, ℓ, and mℓ for 
ℓ = 2. 

•                  is fixed. 
•  Because Lz is quantized, only certain 

orientations of     are possible and this 
is called space quantization.  

•  mℓ is called the magnetic moment 
since z axis is chosen customarily 
along the direction of magnetic field. 

Magnetic Quantum Number mℓ     
•  The angle φ is a measure of the rotation about the z axis. 
•  The solution for  specifies that mℓ is an integer and related to the z 

component of L. 
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 Lz = ml

 L = l l +1( ) = 6



•  Quantum mechanics allows      to be quantized along only one 
direction in space and because of the relationship L2 = Lx

2 + Ly
2 

+ Lz
2, once a second component is known, the third component 

will also be known. è violation of uncertainty principle 
–  One of the three components, such as Lz, can be known clearly but the 

other components will not be precisely known 
•  Now, since we know there is no preferred direction,     
 
 
•  We expect the average of the angular momentum components 

squared to be: 

Magnetic Quantum Number mℓ 
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•  A Dutch physicist Pieter Zeeman showed as early as 1896 that the 
spectral lines emitted by atoms in a magnetic field split into multiple 
energy levels. It is called the Zeeman effect. 

The Normal Zeeman effect: 
•  A spectral line of an atom is split into three lines. 
•  Consider the atom to behave like a small magnet. 
•  The current loop has a magnetic moment µ = IA and the period T = 

2πr / v. If an electron can be considered as orbiting a circular 
current loop of I = dq / dt around the nucleus, we obtain 

•    where L = mvr is the magnitude of the orbital  
   angular momentum 

Magnetic Effects on Atomic Spectra—
The Normal Zeeman Effect 
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µ
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•  The angular momentum is aligned with the magnetic moment, and the 
torque between       and       causes a precession of       . 

 Where μB = eħ / 2m is called the Bohr magneton. 
•      cannot align exactly in the z direction and  

has only certain allowed quantized orientations. 

n  Since there is no magnetic field to 
align them,        points in random 
directions.  

n  The dipole has a potential energy 

The Normal Zeeman Effect 
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The Normal Zeeman Effect 
•  The potential energy is quantized due to the magnetic 

quantum number mℓ. 
 
•  When a magnetic field is applied, the 2p level of atomic 

hydrogen is split into three different energy states with the 
electron energy difference of ΔE = μBB Δmℓ. 

•  So split is into a total of 2ℓ+1 energy states 

mℓ Energy 

1 E0 + μBB 

0 E0 

−1 E0 − μBB 
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VB =−µzB = +µBmlB



The Normal Zeeman Effect 

•  A transition 
from 1s to 2p 

•  A transition 
from 2p to 1s 
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•  An atomic beam of particles in the ℓ = 1 state pass through a magnetic 
field along the z direction. (Stern-Gerlach experiment) 

 
•    

•    

•  The mℓ = +1 state will be deflected down, the mℓ = −1 state up, and the 
mℓ = 0 state will be undeflected. è saw only 2 with silver atom 

•  If the space quantization were due to the magnetic quantum number 
mℓ, the number of mℓ states is always odd at (2ℓ + 1) and should have 
produced an odd number of lines. 

The Normal Zeeman Effect 
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VB = −µzB

Fz = − dVB dz( ) = µz dB dz( )



Intrinsic Spin 
n  In 1920, to explain spectral line splitting of Stern-Gerlach experiment, 

Wolfgang Pauli proposed the forth quantum number assigned to 
electrons  

n  In 1925, Samuel Goudsmit and George Uhlenbeck in Holland proposed 
that the electron must have an intrinsic angular momentum and 
therefore a magnetic moment. 

n  Paul Ehrenfest showed that the surface of the spinning electron should 
be moving faster than the speed of light to obtain the needed angular 
momentum!! 

n  In order to explain experimental data, Goudsmit and Uhlenbeck 
proposed that the electron must have an intrinsic spin quantum 
number s = ½. 
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Intrinsic Spin 
•  The spinning electron reacts similarly to the orbiting electron in 

a magnetic field. (Dirac showed that this is necessary due to special relativity..) 

•  We should try to find L, Lz, ℓ, and mℓ.  
•  The magnetic spin quantum number ms has only two values, 

ms = ±½. 
The electron’s spin will be either “up” or 
“down” and can never be spinning with its 
magnetic moment µs exactly along the z 
axis. 
For each state of the other quantum 
numbers, there are two spins values 
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The intrinsic spin angular momentum 

vector        .  
S

= s s +1( ) = 3 4



Energy Levels and Electron Probabilities 
•  For hydrogen, the energy level depends on the principle 

quantum number n. 

n  In ground state an atom cannot 
emit radiation. It can absorb 
electromagnetic radiation, or gain 
energy through inelastic 
bombardment by particles. 
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Selection Rules 
•  We can use the wave functions to calculate transition 

probabilities for the electron to change from one state to 
another. 

Allowed transitions: Electrons absorbing or emitting photons 
can change states when Δℓ = ±1. (Evidence for the photon 
carrying one unit of angular momentum!) 

    Δn=anything 
    Δℓ = ±1 
    Δmℓ = 0, ±1 

Forbidden transitions: Other transitions possible but occur 
with much smaller probabilities when Δℓ ≠ ±1.   
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Probability Distribution Functions 
•  We must use wave functions to calculate the 

probability distributions of the electrons. 
•  The “position” of the electron is spread over space 

and is not well defined. 
•  We may use the radial wave function R(r) to calculate 

radial probability distributions of the electron. 
•  The probability of finding the electron in a differential 

volume element dτ  is 
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dP =ψ * r,θ ,φ( )ψ r,θ ,φ( )dτ



Equipartition Theorem 
•  The formula for average kinetic energy 3kT/2 works for 

monoatomic molecule what is it for diatomic molecule? 
•  Consider oxygen molecule as two oxygen atoms 

connected by a massless rod è This will have both 
translational and rotational energy 

•  How much rotational energy is there and how is it related 
to temperature? 

•  Equipartition Theorem: 
–  In equilibrium a mean energy of ½ kT per molecule is associated 

with each independent quadratic term in the molecule’s energy. 
–  Each independent phase space coordinate: degree of freedom 
–  Essentially the mean energy of a molecule is ½ kT *NDoF 
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Equipartition Theorem 
n  In a monoatomic ideal gas, each molecule has 

n  There are three degrees of freedom. 
n  Mean kinetic energy is  
n  In a gas of N helium molecules, the total internal energy is 
 
n  The heat capacity at constant volume is   

n  For the heat capacity for 1 mole, 
 

n  using the ideal gas constant R = 8.31 J/K. 

K =

3 1
2 kT( ) = 3

2 kT

U = NE = 3
2 NkT

CV = ∂U
∂T

=

cV = 3
2 NAk =
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The Rigid Rotator Model 
n  For diatomic gases, consider the rigid rotator model. 

 
n  The molecule has rotational E only when it rotates about x or y axis. 
n  The corresponding rotational energies are  
n  There are five degrees of freedom (three translational and two 

rotational)è resulting in mean energy of 5kT/2 per molecule 
according to equi-partition principle (CV=5R/2) 

1
2 Ixω x

2 and 1
2 Iyω y

2
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Table of Measured Gas Heat Capacities 
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