PHYS 3313 – Section 001 Lecture # 23

Monday, April 27, 2015 Dr. Barry Spurlock

- Hydrogen Atom Wave Functions
- Solution for Angular and Azimuthal Equations
- Angular Momentum Quantum Numbers
- Magnetic Quantum Numbers
- Zeeman Effects
- Equipartition Theorem
- Quantum Distributions

Announcements

- Research paper deadline is Monday, May 4
- Research presentation deadline is 8pm, Sunday, May 3
- Reminder Homework #6
 - CH7 end of chapter problems: 7, 8, 9, 12, 17 and 29
 - Due on Wednesday, Apr. 29, in class
- Reading assignments
 - CH7.6 and the entire CH8
- Quiz number 5
 - At the beginning of the class Wednesday, Apr. 29
 - Covers up to what we finish Monday, Apr. 27
 - Bring Your Own Formula sheet
- Final comprehensive exam 11am 1:30pm, Monday, May 11

Hydrogen Atom Radial Wave Functions

- The radial solution is specified by the values of n and \ell
- First few radial wave functions R_{nℓ}

Table	7.1	Hydrogen Atom Radial Wave Functions
n	ℓ	$R_{n\ell}(r)$
1	0	$\frac{2}{(a_0)^{3/2}}e^{-r/a_0}$
2	0	$\left(2-rac{r}{a_0} ight)\!rac{e^{-r/2a_0}}{\left(2a_0 ight)^{3/2}}$
2	1	$\frac{r}{a_0} \frac{e^{-r/2a_0}}{\sqrt{3}(2a_0)^{3/2}}$
3	0	$\frac{1}{(a_0)^{3/2}} \frac{2}{81\sqrt{3}} \left(27 - 18\frac{r}{a_0} + 2\frac{r^2}{{a_0}^2}\right) e^{-r/3a_0}$
3	1	$\frac{1}{(a_0)^{3/2}} \frac{4}{81\sqrt{6}} \left(6 - \frac{r}{a_0}\right) \frac{r}{a_0} e^{-r/3a_0}$
3	2	$\frac{1}{(a_0)^{3/2}} \frac{4}{81\sqrt{30}} \frac{r^2}{{a_0}^2} e^{-r/3a_0}$

Solution of the Angular and Azimuthal Equations

- The solutions for azimuthal eq. are $e^{im_l\phi}$ or $e^{-im_l\phi}$
- Solutions to the angular and azimuthal equations are linked because both have m_ℓ
- Group these solutions together into functions

$$Y(\theta,\phi) = f(\theta)g(\phi)$$

---- spherical harmonics

Normalized Spherical Harmonics

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta$
$1 \pm 1 \pm \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta \ e^{\pm i\phi}$
$\frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta - 1)$
$\pm 1 \qquad \qquad \pm \frac{1}{2} \sqrt{\frac{15}{2\pi}} \sin \theta \cos \theta \ e^{\pm i\phi}$
$\frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta\ e^{\pm 2i\phi}$
$3 \qquad \frac{1}{4}\sqrt{\frac{7}{\pi}}(5\cos^3\theta - 3\cos\theta)$
$3 \qquad \pm 1 \qquad \mp \frac{1}{8} \sqrt{\frac{21}{\pi}} \sin \theta (5 \cos^2 \theta - 1) e^{\pm i\phi}$
$\frac{1}{4}\sqrt{\frac{105}{2\pi}}\sin^2\theta\cos\theta\ e^{\pm2i\phi}$
$3 \qquad \pm 3 \qquad \mp \frac{1}{8} \sqrt{\frac{35}{\pi}} \sin^3 \theta \ e^{\pm 3i\phi}$

Ex 7.1: Spherical Harmonic Function

Show that the spherical harmonic function Y11(θ , ϕ) satisfies the angular Schrodinger equation.

$$Y_{11}(\theta,\phi) = -\frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta e^{i\phi} = A\sin\theta$$

Inserting l = 1 and $m_l = 1$ into the angular Schrodinger equation, we obtain

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dY_{11}}{d\theta} \right) + \left[1(1+1) - \frac{1}{\sin^2\theta} \right] Y_{11} = \frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dY_{11}}{d\theta} \right) + \left(2 - \frac{1}{\sin^2\theta} \right) Y_{11}$$

$$= \frac{A}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\sin\theta}{d\theta} \right) + A \left(2 - \frac{1}{\sin^2\theta} \right) \sin\theta = \frac{A}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \cos\theta \right) + A \left(2 - \frac{1}{\sin^2\theta} \right) \sin\theta$$

$$= \frac{A}{\sin \theta} \frac{d}{d\theta} \left(\frac{1}{2} \sin 2\theta \right) + A \left(2 - \frac{1}{\sin^2 \theta} \right) \sin \theta = \frac{A}{\sin \theta} \cos 2\theta + A \left(2 - \frac{1}{\sin^2 \theta} \right) \sin \theta$$

$$= \frac{A}{\sin \theta} \left(1 - 2\sin^2 \theta \right) + A \left(2 - \frac{1}{\sin^2 \theta} \right) \sin \theta = \frac{A}{\sin \theta} - 2A\sin \theta + A \left(2 - \frac{1}{\sin^2 \theta} \right) \sin \theta = 0$$

Solution of the Angular and Azimuthal Equations

- The radial wave function R and the spherical harmonics Y determine the probability density for the various quantum states.
- Thus the total wave function $\psi(r,\theta,\phi)$ depends on n, ℓ , and m_{ℓ} . The wave function can be written as

$$\psi_{nlm_l}(r,\theta,\phi) = R_{nl}(r)Y_{lm_l}(\theta,\phi)$$

Orbital Angular Momentum Quantum Number &

- It is associated with the R(r) and $f(\theta)$ parts of the wave function.
- Classically, the orbital angular momentum $\vec{L} = \vec{r} \times \vec{p}$ with $L = mv_{\text{orbital}}r$.
- ℓ is related to the magnitude of L by $L = \sqrt{l(l+1)}\hbar$
- In an $\ell = 0$ state, $L = \sqrt{0(1)}\hbar = 0$.

It disagrees with Bohr's semi-classical "planetary" model of electrons orbiting a nucleus $L = n\hbar$.

Orbital Angular Momentum Quantum Number &

- Certain energy level is degenerate with respect to \ell when the energy is independent of \(\ell\).
- Use letter names for the various \(\ext{Values} \)

```
-\ell = 0 1 2 3 4 5...

- Letter = s p d f g h...
```

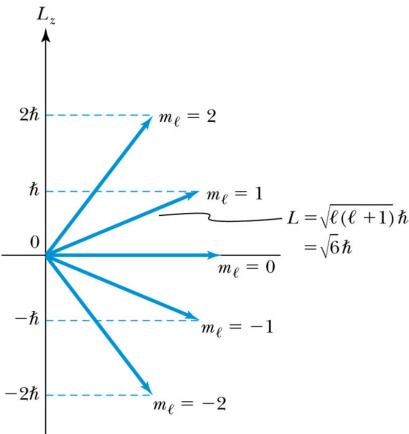
- Atomic states are referred by their n and l
 - s=sharp, p=principal, d=diffuse, f =fundamental, then alphabetical
- A state with n = 2 and $\ell = 1$ is called the 2p state
 - Is 2d state possible?
- The boundary conditions require n > ℓ

Magnetic Quantum Number m_{ℓ}

- The angle ϕ is a measure of the rotation about the z axis.
- The solution for $g(\phi)$ specifies that m_{ℓ} is an integer and related to the z component of L.

$$L_z = m_l \hbar$$

- The relationship of L, L_z , ℓ , and m_{ℓ} for $\ell = 2$.
- $L = \sqrt{l(l+1)}\hbar = \sqrt{6}\hbar$ is fixed.
- Because L_z is quantized, only certain orientations of \vec{L} are possible and this is called **space quantization**.
- m_{ℓ} is called the magnetic moment since z axis is chosen customarily along the direction of magnetic field.



Magnetic Quantum Number m_ℓ

- Quantum mechanics allows $\overline{\mathcal{I}}$ to be quantized along only one direction in space and because of the relationship $L^2 = L_x^2 + L_y^2 + L_z^2$, once a second component is known, the third component will also be known. \rightarrow violation of uncertainty principle
 - One of the three components, such as L_z, can be known clearly but the other components will not be precisely known
- Now, since we know there is no preferred direction,

$$\langle L_x^2 \rangle = \langle L_y^2 \rangle = \langle L_z^2 \rangle$$

• We expect the average of the angular momentum components squared to be: $\langle L^2 \rangle = 3 \langle L_z^2 \rangle = \frac{3}{2l+1} \sum_{m_z=-l}^{+l} m_l^2 \hbar^2 = l(l+1)\hbar^2$

Magnetic Effects on Atomic Spectra— The Normal Zeeman Effect

 A Dutch physicist Pieter Zeeman showed as early as 1896 that the spectral lines emitted by atoms in a magnetic field split into multiple energy levels. It is called the Zeeman effect.

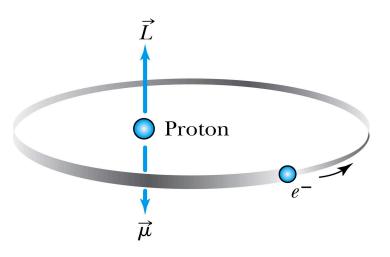
The Normal Zeeman effect:

- A spectral line of an atom is split into <u>three</u> lines.
- Consider the atom to behave like a small magnet.
- The current loop has a magnetic moment $\mu = IA$ and the period $T = 2\pi r / v$. If an electron can be considered as orbiting a circular current loop of I = dq / dt around the nucleus, we obtain

$$\mu = IA = qA/T = \pi r^2 (-e)/(2\pi r/v) = -erv/2 = -\frac{e}{2m}mrv = -\frac{e}{2m}L$$

• $\vec{\mu} = -\frac{e}{2m}\vec{L}$ where L = mvr is the magnitude of the orbital angular momentum

PHYS 3313-001, Spring 2015 Dr. Jaehoon Yu



- Since there is no magnetic field to align them, μ points in random directions.
- The dipole has a potential energy

$$V_B = -\overrightarrow{\mu} \cdot \overrightarrow{B}$$

• The angular momentum is aligned with the magnetic moment, and the torque between μ and B causes a precession of μ .

$$\mu_z = \frac{e}{2m}L_z = \frac{e\hbar}{2m}m_l = -\mu_B m_l$$

Where $\mu_{\rm B} = e\hbar / 2m$ is called the Bohr magneton.

 μ cannot align exactly in the z direction and has only certain allowed quantized orientations.

$$\overrightarrow{\mu} = -\frac{\mu_B L}{\hbar}$$

• The potential energy is quantized due to the magnetic quantum number m_{ℓ} .

$$V_B = -\mu_z B = +\mu_B m_l B$$

• When a magnetic field is applied, the 2p level of atomic hydrogen is split into three different energy states with the electron energy difference of $\Delta E = \mu_B B \Delta m_\ell$.

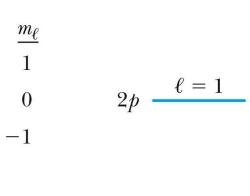
m_{ℓ}	Energy
1	$E_0 + \mu_B B$
0	E_0
-1	$E_0 - \mu_B B$

$$n = 2 \qquad \ell = 1$$

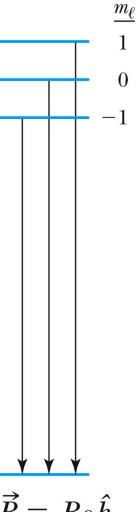
$$\vec{B} = 0$$

So split is into a total of 2l+1 energy states

- A transition from 1s to 2p
- A transition from 2p to 1s

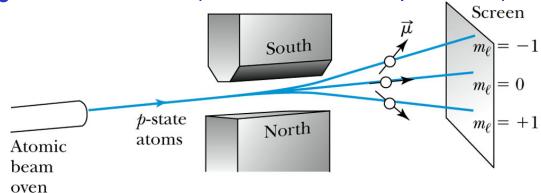


$$\begin{array}{c}
\ell = 0 \\
\vec{B} = 0
\end{array}$$



$$\vec{B} = B_0 \hat{k}$$

• An atomic beam of particles in the ℓ = 1 state pass through a magnetic field along the z direction. (Stern-Gerlach experiment)



•
$$V_B = -\mu_z B$$

•
$$F_z = -(dV_B/dz) = \mu_z(dB/dz)$$

- The m_{ℓ} = +1 state will be deflected down, the m_{ℓ} = -1 state up, and the m_{ℓ} = 0 state will be undeflected. \Rightarrow saw only 2 with silver atom
- If the space quantization were due to the magnetic quantum number m_{ℓ} , the number of m_{ℓ} states is always odd at $(2\ell + 1)$ and should have produced an odd number of lines.

Monday, April 27, 2015

PHYS 3313-001, Spring 2015 Dr. Jaehoon Yu

Intrinsic Spin

- In 1920, to explain spectral line splitting of Stern-Gerlach experiment, Wolfgang Pauli proposed the forth quantum number assigned to electrons
- In 1925, Samuel Goudsmit and George Uhlenbeck in Holland proposed that the <u>electron must have an intrinsic angular momentum</u> and therefore a magnetic moment.
- Paul Ehrenfest showed that the surface of the spinning electron should be moving faster than the speed of light to obtain the needed angular momentum!!
- In order to explain experimental data, Goudsmit and Uhlenbeck proposed that the electron must have an **intrinsic spin quantum** number $s = \frac{1}{2}$.

Intrinsic Spin

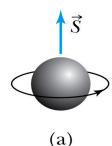
- The spinning electron reacts similarly to the orbiting electron in a magnetic field. (Dirac showed that this is necessary due to special relativity..)
- We should try to find L, L_z , ℓ , and m_{ℓ} .
- The magnetic spin quantum number m_s has only two values, $m_s = \pm \frac{1}{2}$.

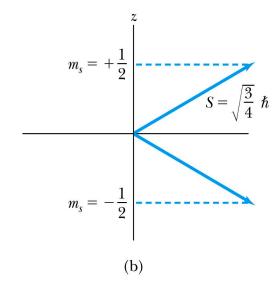
The electron's spin will be either "up" or "down" and can never be spinning with its magnetic moment μ_s exactly along the z axis.

For each state of the other quantum numbers, there are two spins values

The intrinsic spin angular momentum

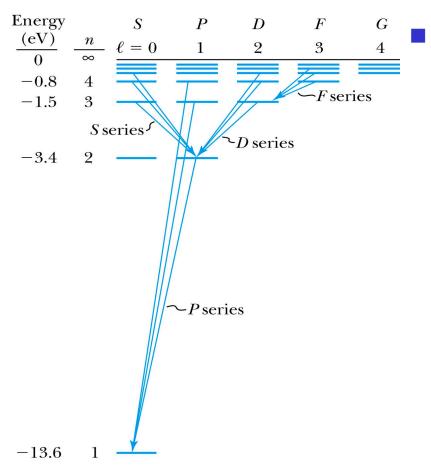
vector
$$|\vec{S}| = \sqrt{s(s+1)}\hbar = \sqrt{3/4}\hbar$$





Energy Levels and Electron Probabilities

• For hydrogen, the energy level depends on the principle quantum number *n*.



In ground state an atom cannot emit radiation. It can absorb electromagnetic radiation, or gain energy through inelastic bombardment by particles.

Selection Rules

 We can use the wave functions to calculate transition probabilities for the electron to change from one state to another.

Allowed transitions: Electrons absorbing or emitting photons can change states when $\Delta \ell = \pm 1$. (Evidence for the photon carrying one unit of angular momentum!)

$$\Delta n$$
=anything $\Delta \ell = \pm 1$ $\Delta m_{\ell} = 0, \pm 1$

Forbidden transitions: Other transitions possible but occur with much smaller probabilities when $\Delta \ell \neq \pm 1$.

Probability Distribution Functions

- We must use wave functions to calculate the probability distributions of the electrons.
- The "position" of the electron is spread over space and is not well defined.
- We may use the radial wave function R(r) to calculate radial probability distributions of the electron.
- The probability of finding the electron in a differential volume element $d\tau$ is

$$dP = \psi^*(r,\theta,\phi)\psi(r,\theta,\phi)d\tau$$

Equipartition Theorem

- The formula for average kinetic energy 3kT/2 works for monoatomic molecule what is it for diatomic molecule?
- Consider oxygen molecule as two oxygen atoms connected by a massless rod → This will have both translational and rotational energy
- How much rotational energy is there and how is it related to temperature?
- Equipartition Theorem:
 - In equilibrium a mean energy of ½ kT per molecule is associated with each independent quadratic term in the molecule's energy.
 - Each independent phase space coordinate: degree of freedom
 - Essentially the mean energy of a molecule is ½ kT *NDoF

Equipartition Theorem

In a monoatomic ideal gas, each molecule has

$$K = \frac{1}{2} m v^2 = \frac{1}{2} m \left(v_x^2 + v_y^2 + v_z^2 \right)$$

- There are three degrees of freedom.
- Mean kinetic energy is $3(\frac{1}{2}kT) = \frac{3}{2}kT$
- In a gas of N helium molecules, the total internal energy is

$$U = N\overline{E} = \frac{3}{2}NkT$$

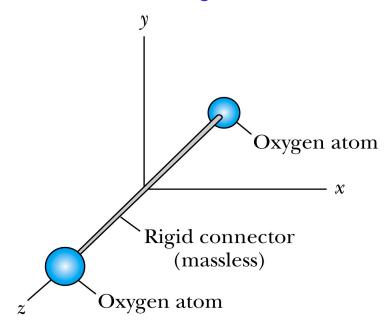
- The heat capacity at constant volume is $C_V = \frac{\partial U}{\partial T} = \frac{3}{2}Nk$
- For the heat capacity for 1 mole,

$$c_V = \frac{3}{2} N_A k = \frac{3}{2} R = 12.5 \text{ J/K}$$

using the ideal gas constant R = 8.31 J/K.

The Rigid Rotator Model

For diatomic gases, consider the rigid rotator model.



- The molecule has rotational E only when it rotates about x or y axis.
- The corresponding rotational energies are $\frac{1}{2}I_x\omega_x^2$ and $\frac{1}{2}I_y\omega_y^2$
- There are five degrees of freedom (three translational and two rotational) → resulting in mean energy of 5kT/2 per molecule according to equi-partition principle (C_V=5R/2)

Table of Measured Gas Heat Capacities

Table 9.1	Molar Heat Capacities for		
	Selected Gases at 15°C and		
	1 Atmosphere		

Gas	$c_{\mathrm{V}}\left(\mathrm{J/K}\right)$	$c_{ m V}/R$	
Ar	12.5	1.50	
He	12.5	1.50	
CO	20.7	2.49	
H_2	20.4	2.45	
HCl	21.4	2.57	
N_2	20.6	2.49	
NO	20.9	2.51	
O_9	21.1	2.54	
Cl_2	24.8	2.98	
CO_2	28.2	3.40	
CS_2	40.9	4.92	
$\overline{\mathrm{H_2S}}$	25.4	3.06	
N_2O	28.5	3.42	
SO	31.3	3.76	