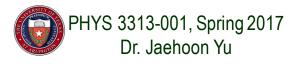
PHYS 3313 – Section 001 Lecture #12

Monday, Feb. 27, 2017 Dr. **Jae**hoon **Yu**

- Photoelectric Effect
- Compton Effect
- Pair production/Pair annihilation
- Rutherford Scattering Experiment and Rutherford Atomic Model

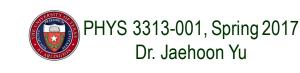
Announcements


- Midterm Exam
 - In class Wednesday, March. 8
 - Covers from CH1.1 through what we learn March 6 plus the math refresher in the appendices
 - Mid-term exam constitutes 20% of the total
 - Please do NOT miss the exam! You will get an F if you miss it.
 - BYOF: You may bring a one 8.5x11.5 sheet (front and back) of handwritten formulae and values of constants for the exam
 - No derivations, word definitions or solutions of any problems!
 - Eg., Lorentz velocity transformation NOT allowed!
 - No additional formulae or values of constants will be provided!
- Quiz 2 results
 - Class Average: 34.5/60
 - Equivalent to : 57.5/100
 - Previous result: 20.8/100
 - Class top score: 60/60 Monday, Feb. 27, 2017

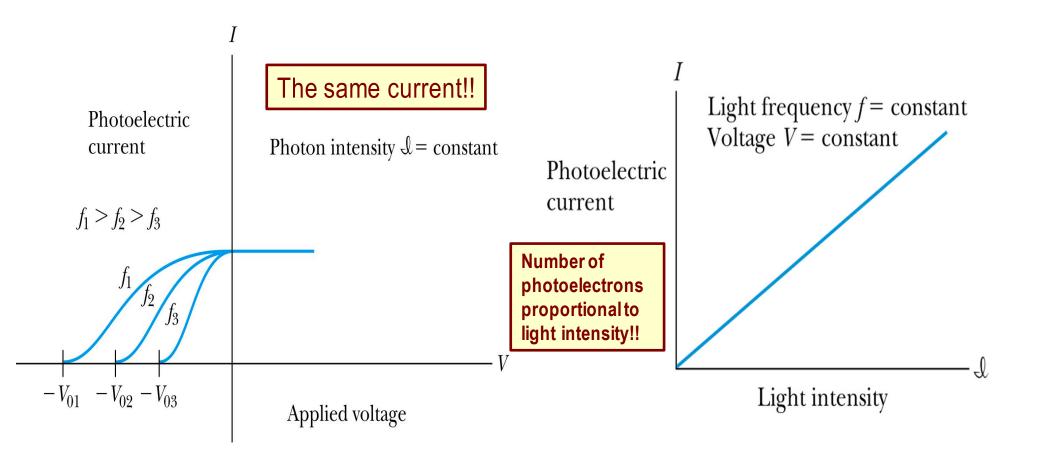
Experimental Observations eV_0 **KE** proportional to frequency!! Photocurrent Light frequency f = constantThe same V₀ Ag $\mathcal{I} = 3\mathcal{I}_0$ Retarding but higher potential current $\mathcal{I} = 2\mathcal{I}_0$ Slope = h $\mathcal{I} = \mathcal{I}_0$ Light frequency V0 $-V_0$ Applied voltage Intercept = $-\phi$ The same current!! Light frequency f = constantPhotoelectric Voltage V = constantPhoton intensity $\mathcal{A} = \text{constant}$ current Photoelectric $f_1 > f_2 > f_3$ current Number of photoelectrons proportional to light intensity!! L $-V_{01}$ $-V_{02}$ $-V_{03}$ Light intensity Applied voltage Wednesday, Feb. 22, PHYS 3313-001, Spring 2017 3 Dr. Jaehoon Yu 2017

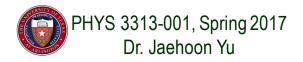
Summary of Experimental Observations

- Light intensity does not affect the KE of the photoelectrons
- The max KE of the photoelectrons for a given emitter material depends only on the frequency of the light
- The smaller the work function ϕ of the emitter material, the smaller is the threshold frequency of the light that can eject photoelectrons.
- When the photoelectrons are produced, their number is proportional to the intensity of light.
- The photoelectrons are emitted almost instantly following the illumination of the photocathode, independent of the intensity of the light.
 Totally unexplained by classical physics


Einstein's Theory of Photoelectric Effect

 Einstein suggested that the electromagnetic radiation of the light is quantized into particles called **photons**. Each photon has the energy quantum:


$$E = hf$$


- where *f* is the frequency of the light and *h* is Planck's constant.
- The photon travels at the speed of light in vacuum, and its wavelength is given by

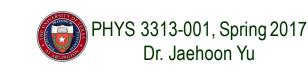
$$\lambda f = c$$

Experimental Observations

Einstein's Theory

• Conservation of energy yields:

Energy Before(photon)=Energy After (electron)


 $hf = \phi + KE(photoelectron)$

where ϕ is the work function of the metal The photon energy can then be written

$$hf = \phi + \frac{1}{2}mv_{\max}^2$$

• The retarding potentials measure the KE of the most energetic photoelectrons.

$$eV_0 = \frac{1}{2}mv_{\rm max}^2$$

Quantum Interpretation

• KE of the electron depends only on the light frequency and the work function ϕ of the material not the light intensity at all

$$\frac{1}{2}mv_{\max}^2 = eV_0 = hf - \phi$$

• Einstein in 1905 predicted that the stopping potential was linearly proportional to the light frequency, with the slope h, the same constant found by Planck. 1

$$eV_0 = \frac{1}{2}mv_{\text{max}}^2 = hf - hf_0 = h(f - f_0)$$

• From this, Einstein concluded that light is a particle with energy:

$$E = hf = \frac{hc}{\lambda}$$
Was he already thinking about particle/wave duality?
Monday, Feb. 27, 2017
PHYS 3313-001, Spring 2017
Dr. Jaehoon Yu

Ex 3.11: Photoelectric Effect

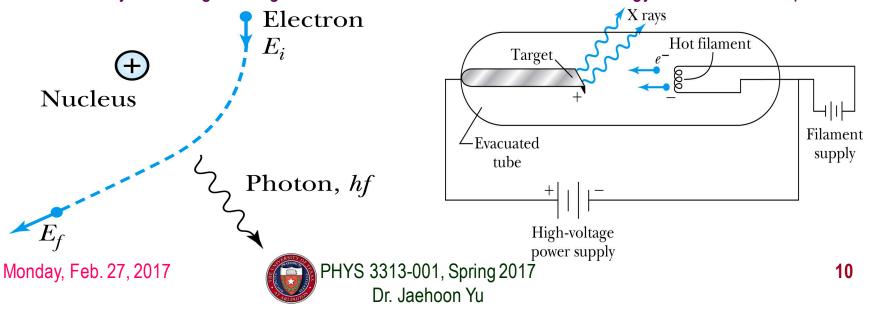
- Light of wavelength 400nm is incident upon lithium (ϕ =2.93eV). Calculate (a) the photon energy (eV) and (b) the stopping potential V₀.
- Since the wavelength is known, we use plank's formula:

$$E = hf = \frac{hc}{\lambda} = \frac{(1.626 \times 10^{-34} \, J \cdot s)(3 \times 10^8 \, m/s)}{400 \times 10^{-9} \, m} = 3.10 \, eV$$

• The stopping potential can be obtained using Einstein's formula for photoelectron energy

$$eV_0 = hf - \phi = E - \phi$$

 $V_0 = \frac{E - \phi}{e} = \frac{(3.10 - 2.93)eV}{e} = 0.17V$



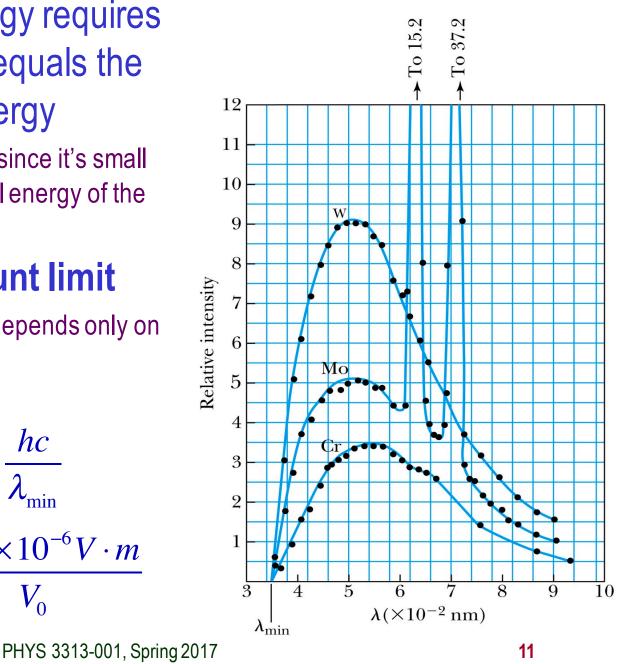
X-Ray Production

- **Bremsstrahlung** (German word for braking radiation): Radiation of a photon from an energetic electron passing through matter due to an acceleration
- Since linear momentum must be conserved, the nucleus absorbs very little energy, and it is ignored. The final energy of the electron is determined from the conservation of energy E E = bf

$$E_f = E_i - hf$$

- An electron that loses a large amount of energy will produce an X-ray photon.
 - Current passing through a filament produces copious numbers of electrons by thermionic emission.
 - These electrons are focused by the cathode structure into a beam and are accelerated by potential differences of thousands of volts until they impinge on a metal anode surface, producing x rays by bremsstrahlung as they stop in the anode material
 - X-ray wavelengths range 0.01 10nm. What is the minimum energy of an electron to produce X-ray?

Inverse Photoelectric Effect.


Dr. Jaehoon Yu

- Conservation of energy requires that the electron KE equals the maximum photon energy
 - Work function neglected since it's small compared to the potential energy of the electron.

This is the **Duane-Hunt limit**

- The photon wavelength depends only on the accelerating voltage
 - The same for all targets.

$$eV_0 = hf_{\max} = \frac{hc}{\lambda_{\min}}$$
$$\lambda_{\min} = \frac{hc}{eV_0} = \frac{1.24 \times 10^{-6} V \cdot m}{V_0}$$

Compton Effect

- When a photon enters matter, it is likely to interact with one of the atomic electrons.
- The photon is scattered from only one electron
- The laws of conservation of energy and momentum apply as in any elastic collision between two particles. The momentum of a particle moving at the speed of light is

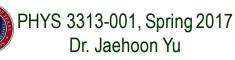
$$p = \frac{E}{c} = \frac{hf}{c} = \frac{h}{\lambda}$$
The electron energy can be written as
$$E_e^2 = \left(m_e c^2\right)^2 + p_e^2 c^2$$
Incident photon
$$E = hf$$

$$p = \frac{h}{\lambda}$$
Target
electron
$$E_i = mc^2$$
Recoil electron
$$E_f = E_e$$

Change of the scattered photon wavelength is known as the **Compton effect**:

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$$

Monday, Feb. 27, 2017



12

Pair Production and Annihilation

- If a photon can create an electron, it must also create a positive charge to balance charge conservation.
- In 1932, C. D. Anderson observed a positively charged electron (e⁺) in cosmic radiation. This particle, called a positron, had been predicted to exist several years earlier by P. A. M. Dirac.
- A photon's energy can be converted entirely into an electron and a positron in a process called **pair production**.
 - Can only happen inside a material
 - How much energy do you think is needed?

 $\gamma \rightarrow e^- + e^+$

Pair Production in Empty Space?

Energy conservation for pair production in empty space $hf = E_+ + E_- + K.E.$

Momentum conservation yields

$$hf = p_{-}c\cos\theta + p_{+}c\cos\theta$$

Thus max momentum exchange $hf_{max} = p_{-}c + p_{+}c$

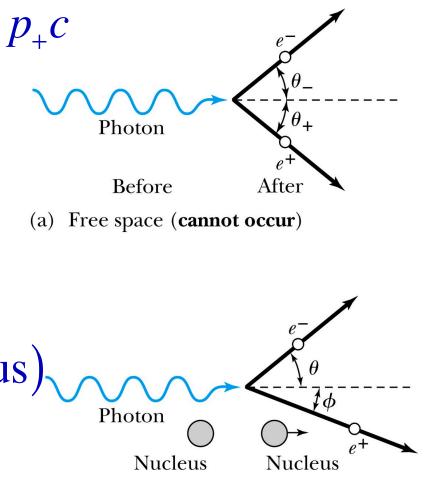
Recall that the total energy for a particle can be written as

$$E_{\pm}^{2} = p_{\pm}^{2}c^{2} + m_{e}^{2}c^{4}$$

However this yields a contradiction: $hf > p_c + p_+c$

and hence the conversion of energy in empty space is impossible and thus pair production cannot happen in empty space

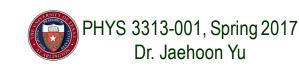
Monday, Feb. 27, 2017



PHYS 3313-001, Spring 2017 Dr. Jaehoon Yu

Pair Production in Matter

- Since the relations $hf_{max} = p_{-}c + p_{+}c$ and $hf > p_{-}c + p_{+}c$ contradict each other, a photon can not produce an electron and a positron in empty space.
- In the presence of matter, however, the nucleus absorbs some energy and momentum. $hf = E_{+} + E_{+} + K.E.($ nucleus)
- The photon energy required for pair production in the presence of matter is $hf > 2mc^2$



Before

After

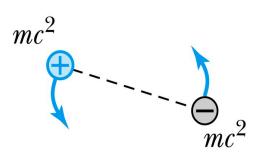
(b) Beside nucleus

Pair Annihilation

- A positron going through matter will likely **annihilate** with an electron.
- A positron is drawn to an electron and form an atom-like configuration called **positronium**.
- Pair annihilation in empty space will produce two photons to conserve momentum. Annihilation near a nucleus can result in a single photon. (a)

 $0 = \frac{hf_1}{hf_2} - \frac{hf_2}{hf_2}$

- Conservation of energy: $2m_ec^2 \approx hf_1 + hf_2$
- Conservation of momentum:
- The two photons will be almost identical, so that


$$f_1 = f_2 = f$$

• The two photons from a positronium annihilation will move in the opposite directions with an energy of:

$$hf = m_e c^2 = 0.511 \text{MeV}$$

Monday, Feb. 27, 2017

Positronium, before decay (schematic only)

After annihilation

(b)