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PHYS 3313 – Section 001
Lecture #18

Monday, April 3, 2017
Dr. Jaehoon Yu

• Probability of Particle
• Time Independent Schrodinger Equation
• Normalization and Probability
• Expectation Values
• Momentum, Position and Energy Operators
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Announcements
• Quiz this Wednesday, April 5

– At the beginning of the class
– Covers CH5.1 through what we finish today
– BYOF with the same rule as before

• Reminder: Quadruple extra credit
– Colloquium on April 19, 2017
– Speaker: Dr. Nigel Lockyer, Director of Fermilab
– Make your arrangements to take advantage of this 

opportunity



Reminder: Special Project #4
• Prove that the wave function 

is a good solution for the time-dependent Schrödinger 
wave equation.  Do NOT use the exponential 
expression of the wave function. (10 points)

• Determine whether or not the wave function Ψ=Ae-α|x|

satisfy the time-dependent Schrödinger wave 
equation. (10 points)

• Due for this special project is this Wednesday, Apr. 5.
• You MUST have your own answers!
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A cos kx −ωt( ) + isin kx −ωt( )⎡⎣ ⎤⎦



Probability of the Particle
• The probability of 

observing a particle 
between x and x + dx in 
each state is

• Note that E0 = 0 is not a 
possible energy level.

• The concept of energy 
levels, as first discussed 
in the Bohr model, has 
surfaced in a natural 
way by using waves.
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Pndx ∝ Ψn x( ) 2 dx



The Schrödinger Wave Equation
• Erwin Schrödinger and Werner Heisenberg 

proposed quantum theory in 1920
• The two proposed very different forms of equations
• Heisenberg: Matrix based framework
• Schrödinger: Wave mechanics, similar to the 

classical wave equation
• Paul Dirac and Schrödinger later on proved that

the two give identical results
• The probabilistic nature of quantum theory is

contradictory to the direct cause and effect seen
in classical physics and makes it difficult to grasp!
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The Time-dependent Schrödinger Wave Equation
• The Schrödinger wave equation in its time-dependent 

form for a particle of energy E moving in a potential V in 
one dimension is

• The extension into three dimensions is

• where is an imaginary number
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The wave equation must be linear so that we can use the superposition principle to form a 
wave packet.  Prove that the wave function in Schrödinger equation is linear by showing 
that it is satisfied for the wave equation Ψ (x,t)=aΨ1 (x,t)+bΨ2 (x,t) where a and b are 
constants and Ψ1 (x,t) andΨ2 (x,t) describe two waves each satisfying the Schrödinger Eq.

Ex 6.1: Wave equation and Superposition
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General Solution of the Schrödinger 
Wave Equation

• The general form of the solution of the Schrödinger wave 
equation is given by:

• which also describes a wave propagating in the x direction. In 
general the amplitude may also be complex. This is called the 
wave function of the particle.

• The wave function is also not restricted to being real. Only the 
physically measurable quantities (or observables) must be 
real. These include the probability, momentum and energy.
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Ψ x,t( ) = Aei kx−ωt( ) = A cos kx −ωt( ) + isin kx −ωt( )⎡⎣ ⎤⎦



Show that Aei(kx-ωt) satisfies the time-dependent Schrödinger wave Eq. 
Ex 6.2: Solution for Wave Equation
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Ψ = Aei kx−ωt( )
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The wave number: k = 2π

λ
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= 2π p
h
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  The momentum: p = k
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So Aei(kx-ωt) is a good solution and satisfies Schrödinger Eq.



Determine whether Ψ (x,t)=Asin(kx-ωt) is an acceptable solution for the 
time-dependent Schrödinger wave Eq. 

Ex 6.3: Bad Solution for Wave Equation
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Ψ = Asin kx −ωt( )
∂Ψ
∂x

= ∂
∂x

Asin kx −ωt( )( ) = kAcos kx −ωt( )

 
i −ω cos kx −ωt( )( ) = − 

2

2m
−k2 sin kx −ωt( )( ) +V sin kx −ωt( )

∂Ψ
∂t

= ∂
∂t

Asin kx −ωt( )( ) = −Aω cos kx −ωt( )

∂2Ψ
∂x2

= ∂
∂x

kAcos kx −ωt( )( ) = −k2Asin kx −ωt( ) = −k2Ψ

This is not true in all x and t.  So Ψ (x,t)=Asin(kx-ωt) is not an acceptable 
solution for the Schrödinger Eq. Is it for the classical wave eq:

 
−iω cos kx −ωt( ) = 2k2

2m
+V

⎛
⎝⎜

⎞
⎠⎟
sin kx −ωt( )

−iE cos kx −ωt( ) = p2

2m
+V

⎛
⎝⎜

⎞
⎠⎟
sin kx −ωt( )

∂2Ψ x,t( )
∂x2

= 1
v2

∂2Ψ x,t( )
∂t 2



Normalization and Probability
• The probability P(x) dx of a particle being between x

and X + dx was given by the equation

• Here Ψ* denotes the complex conjugate of Ψ
• The probability of the particle being between x1 and x2

is given by

• The wave function must also be normalized so that the 
probability of the particle being somewhere on the x
axis is 1.
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P x( )dx = Ψ* x,t( )Ψ x,t( )dx

P = Ψ*Ψdx
x1

x2∫

Ψ* x,t( )Ψ x,t( )dx
−∞

+∞

∫ = 1



Consider a wave packet formed by using the wave function that Ae-α|x|, 
where A is a constant to be determined by normalization.  Normalize this 
wave function and find the probabilities of the particle being between 0 and 
1/α, and between 1/α and 2/α.  

Ex 6.4: Normalization
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Using the wave function, we can compute the probability for a particle to be 
in 0 to 1/α and 1/α to 2/α.

Ex 6.4: Normalization, cont’d
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Ψ = α e−α x
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0
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How about 2/α:to ∞?
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