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*  Time Independent Wave Equation
»  Expectation Values

*  Momentum Operator

»  Position and Energy Operators

* Infinite Square-well Potential
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Announcements

» Homework #4
— End of chapter problems on CH5: 8, 10, 16, 24, 26, 36 and 47
— Due Wednesday, Apr. 12

» Reminder: Quadruple extra credit
— Colloquiumon April 19, 2017
— Speaker: Dr. Nigel Lockyer, Director of Fermilab
— Make your arrangements to take advantage of this opportunity

* Colloquium today

— Dr. Jodi Cooley of SMU
— Title: In Pursuit of Dark Matter: Recent Results from SuperCDMS
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Physics Department
The University of Texas at Arlington

Colloquium

In Pursuit of Dark Matter: Recent Results from
SuperCDMS

Dr. Jodi Cooley
Southern Methodist University

Wednesday April 5, 2017

4:00 Room 103 Science Hall
Abstract

Over the last two decades, astrophysicists and astronomers have produced compelling evidence on
galactic and cosmological scales indicates that ~80% of the matter density of the Universe consists of
non-luminous, non-baryonic dark matter. Despite this fact, the composition of the dark matter remains
unknown. One compelling candidate for particle dark matter is the Weakly Interacting Massive Particle
(WIMP). Working in a low-background environment in the Soudan Mine, located in northern
Minnesota, the SuperCDMS experiment was designed to directly detect interactions between WIMPs
and nuclei in its target Ge crystals. In this talk I will present the latest results from the SuperCDMS
experiment. I will also discuss the current status of the SuperCDMS at SNOLAB experiment and plans
for a future 50-kg scale experiment which is slated for operation in SNOLAB.

Refreshments will be served at 3:30 p.m. in the Physics Library



Special project #6
Show that the Schrodinger equation

becomes Newton’s second law In the
classical limit. (15 points)

Deadline Monday, Apr. 17, 2017
You MUST have your own answers!
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Properties of a Valid Wave Function

Boundary conditions

1) To avoid infinite probabilities, the wave function must be finite
everywhere.

2) Toavoid multiple values of the probability, the wave function must be
single valued.

3) For a finite potential, the wave function and its derivatives must be
continuous. This is required because the second-order derivative
term in the wave equation must be single valued. (There are
exceptions to this rule when Vs infinite.)

4) In order to normalize the wave functions, they must approach zero as
x approaches infinity.

Solutions that do not satisfy these properties do not generally
correspond to physically realizable circumstances.
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Time-Independent Schrodinger Wave Equation

* The potential in many cases will not depend explicitly on time.

 The dependence on time and position can then be separated
in the Schrodinger wave equation. Let, W (x,¢) =y (x) f(¢)

which yields: ihl//(x) BJ;EI) :_hzzf(t) 825//(236) +V(x)l//(x)f(t)

Now divide by the wave function: 20 - L0 T¥H) v

* The left-hand side of this last equation depends only on time,
and the right depends only on spatial coordinates. Hence each
side must be equal to a constant. The time dependentside is

zhldf
fdt

B
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Time-Independent Schrodinger Wave Equation(con't)
We integrate both sides and find: ihjiz der = ihln f=Bt+C
/

where C is an integration constant that we may choose to be 0.
Therefore n f— Bt
"=
l

This determines fto be f(¢)=e®" = e ™" . Comparing this to the
time dependent portion of the free partlcle wave function e ™ = ¢ &

= B=ho=E E> i)
f(z) ot

This is known as the time-independent Schrodinger wave
equation, and itis a fundamental equation in quantum mechanics.

IRV (2 ()= By (v
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Stationary State

» Recalling the separation of variables: ¥ (x.r)=w (x)f ()
andwith f(¢)=e"" the wave function can be
written as:  W(x,t)=y (x)e ™
* The probability density becomes:

W =y (x)(e”e ™ )=y ()

* The probability distributions are constantin time.
This Is a standing wave phenomenathat is called the
stationary state.
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Comparison of Classical and
Quantum Mechanics

m Newton’s second law and Schrodinger’'s wave
equation are both differential equations.

= Newton’s second law can be derived from the
Schrodinger wave equation, so the latter is the more
fundamental.

m Classical mechanics only appears to be more precise
because it deals with macroscopic phenomena. The
underlying uncertainties in macroscopic
measurements are just too small to be significant.
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Expectation Values

* The expectation value is the expected result of the average
of many measurements of a given quantity. The expectation
value of x is denoted by <x>.

* Any measurable quantity for which we can calculate the
expectation value is called the physical observable. The
expectation values of physical observables (for example,
position, linear momentum, angular momentum, and energy)
must be real, because the experimental results of
measurements are real. i

» The average value of xis 3= Mfut Vot # Nt # NoXy -0 %
N, +N,+N,+N, +--- YN,

i

Wednesday, April 5, 2017 AN pHvs 3313-001, Spring 2017 10
V& Dr. Jaehoon Yu



Continuous Expectation Values

 We can change from discrete to _[+me (x)dx
continuous variables by using X = ==
the probability P(x,f) of j P(x)dx
observing the particle at the -
particular x. ) J+°°x‘11(x,t)* W (x,) dx
* Using the wave function,the ~ x === -
expectation value is: | W (xr) W (x.t)dx

* The expectation value of any
function g(x) for a normalized
wave function:

Wednesday, April 5, 2017 AN pHvs 3313-001, Spring 2017 1
V& Dr. Jaehoon Yu



Momentum Operator

To find the expectation value of p, we first need to represent p in terms
of x and t. Consider the derivative of the wave function of a free particle
with respect to x:

o'¥ _ J i(kx—t) | _  +7 i(kx—at) :
a—x—a—x[e ]— ike = kY
With k=p/h we have 9 _ i Py
0x

T Y
This yields p[‘P(x,t)] — _if d (x,t)
0x
This suggests we can define the momentum operatoras p = —ihi .
. . 0x
The expectation value of the momentumis
oW (x,t
J ¥ (x,t)p¥ xt)dx-—zh ‘P(xt) x )dx

0x
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Position and Energy Operators

m [he position x Is its own operator as seen above.
m The time derivative of the free-particle wave function

IS J¥ d kx—ct . i(kx—ot :
or at[ N
Substituting w=E/ h yields E| ¥ (x.r) |=i a‘{'gj 1)

d

= So the energy operatoris £=if~

m The expectation value of the energy therefore is
8‘P(x,t)

ot
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