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PHYS 3313 – Section 001
Lecture #19

Wednesday, April 5, 2017
Dr. Jaehoon Yu

• Time Independent Wave Equation
• Expectation Values
• Momentum Operator 
• Position and Energy Operators
• Infinite Square-well Potential
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Announcements
• Homework #4

– End of chapter problems on CH5: 8, 10, 16, 24, 26, 36 and 47
– Due Wednesday, Apr. 12

• Reminder: Quadruple extra credit
– Colloquium on April 19, 2017
– Speaker: Dr. Nigel Lockyer, Director of Fermilab
– Make your arrangements to take advantage of this opportunity

• Colloquium today
– Dr. Jodi Cooley of SMU
– Title: In Pursuit of Dark Matter: Recent Results from SuperCDMS





Special project #6
• Show that the Schrodinger equation 

becomes Newton’s second law in the 
classical limit.  (15 points)

• Deadline Monday, Apr. 17, 2017
• You MUST have your own answers!
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Properties of a Valid Wave Function
Boundary conditions
1) To avoid infinite probabilities, the wave function must be finite 

everywhere.
2) To avoid multiple values of the probability, the wave function must be 

single valued.
3) For a finite potential, the wave function and its derivatives must be 

continuous. This is required because the second-order derivative 
term in the wave equation must be single valued. (There are 
exceptions to this rule when V is infinite.)

4) In order to normalize the wave functions, they must approach zero as 
x approaches infinity.

Solutions that do not satisfy these properties do not generally 
correspond to physically realizable circumstances.
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Time-Independent Schrödinger Wave Equation
• The potential in many cases will not depend explicitly on time.
• The dependence on time and position can then be separated 

in the Schrödinger wave equation. Let,

which yields:

Now divide by the wave function:
• The left-hand side of this last equation depends only on time, 

and the right depends only on spatial coordinates. Hence each 
side must be equal to a constant. The time dependent side is
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• We integrate both sides and find:

where C is an integration constant that we may choose to be 0. 
Therefore

This determines f to be                                    . Comparing this to the 
time dependent portion of the free particle wave function 

• This is known as the time-independent Schrödinger wave 
equation, and it is a fundamental equation in quantum mechanics.

Time-Independent Schrödinger Wave Equation(con’t)

€ 
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i df

f∫ = Bdt∫ ⇒ i ln f = Bt +C

 
ln f = Bt

i

 f t( ) = eBt i = e− iBt 

 
i 1
f t( )

∂ f t( )
∂t

= E

 
− 

2

2m
d 2ψ x( )
dx2

+V x( )ψ x( ) = Eψ x( )

 ⇒ B = ω = E

 e− iωt = e− iBt 



Stationary State
• Recalling the separation of variables: 

and with                       the wave function can be 
written as:

• The probability density becomes:

• The probability distributions are constant in time. 
This is a standing wave phenomena that is called the 
stationary state.

f t( ) = e− iωt
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Ψ x,t( ) =ψ x( ) f t( )

Ψ x,t( ) =ψ x( )e− iωt

Ψ*Ψ =ψ 2 x( ) eiωte− iωt( ) =ψ 2 x( )



Comparison of Classical and 
Quantum Mechanics

n Newton’s second law and Schrödinger’s wave 
equation are both differential equations.

n Newton’s second law can be derived from the 
Schrödinger wave equation, so the latter is the more 
fundamental.

n Classical mechanics only appears to be more precise 
because it deals with macroscopic phenomena. The 
underlying uncertainties in macroscopic 
measurements are just too small to be significant.
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Expectation Values
• The expectation value is the expected result of the average 

of many measurements of a given quantity. The expectation 
value of x is denoted by <x>.

• Any measurable quantity for which we can calculate the 
expectation value is called the physical observable. The 
expectation values of physical observables (for example, 
position, linear momentum, angular momentum, and energy) 
must be real, because the experimental results of 
measurements are real.

• The average value of x is 
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x = N1x1 + N2x2 + N3x3 + N4x4 +
N1 + N2 + N3 + N4 +

=
Nixi

i
∑

Ni
i
∑



Continuous Expectation Values
• We can change from discrete to 

continuous variables by using 
the probability P(x,t) of 
observing the particle at the 
particular x.

• Using the wave function, the 
expectation value is:

• The expectation value of any 
function g(x) for a normalized 
wave function:
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Momentum Operator
• To find the expectation value of p, we first need to represent p in terms 

of x and t. Consider the derivative of the wave function of a free particle 
with respect to x:

With k = p / ħ we have

This yields

• This suggests we can define the momentum operator as .
• The expectation value of the momentum is
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Position and Energy Operators
n The position x is its own operator as seen above.
n The time derivative of the free-particle wave function 

is

Substituting ω = E / ħ yields

n So the energy operator is
n The expectation value of the energy therefore is
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∂Ψ
∂t

=

E Ψ x,t( )⎡⎣ ⎤⎦ =
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