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PHYS 3313 – Section 001
Lecture #20

Monday, April 10, 2017
Dr. Amir Farbin

• Infinite Square-well Potential
• Finite Square Well Potential
• Penetration Depth
• Degeneracy
• Simple Harmonic Oscillator
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Announcements
• Reminder: Homework #4

– End of chapter problems on CH5: 8, 10, 16, 24, 26, 36 and 47
– Due this Wednesday, Apr. 12

• Quiz 3 results
– Class average: 25.1

• Equivalent to:  50.2/100
• Previous quizzes: 21/100 and 57.6/100

– Top score:    47/50
• Reminder: Quadruple extra credit

– Colloquium on April 19, 2017
– Speaker: Dr. Nigel Lockyer, Director of Fermilab
– Make your arrangements to take advantage of this opportunity



Reminder: Special project #6
• Show that the Schrodinger equation 

becomes Newton’s second law in the 
classical limit.  (15 points)

• Deadline Monday, Apr. 17, 2017
• You MUST have your own answers!
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Infinite Square-Well Potential
• The simplest such system is that of a particle trapped in a 

box with infinitely hard walls that the particle cannot 
penetrate. This potential is called an infinite square well 
and is given by

• The wave function must be zero where the potential is 
infinite.

• Where the potential is zero inside the box, the time 
independent Schrödinger wave equation                                            
becomes where .

• The general solution is                 .
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V x( ) = ∞      x ≤ 0, x ≥ L
0       0 < x < L

⎧
⎨
⎩

 

d 2ψ
dx2

= − 2mE
2

ψ  k = 2mE 2

ψ x( ) = Asin kx + Bcoskx
= −k2ψ

 
− 

2

2m
d 2ψ x( )
dx2

+V x( )ψ x( ) = Eψ x( )



Quantization
• Since the wave function must be continuous, the boundary conditions

of the potential dictate that the wave function must be zero at x = 0
and x = L. These yield valid solutions for B=0, and for integer values
of n such that kL = nπè k=nπ/L

• The wave function now becomes

• We normalize the wave function

• The normalized wave function becomes

• These functions are identical to those obtained for a vibrating string
with fixed ends.
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ψ n x( ) =
ψ

n

* x( )ψ n x( )
−∞

+∞

∫ dx = 1

ψ n x( ) =

A2 sin2 nπ x
L

⎛
⎝⎜

⎞
⎠⎟−∞

+∞

∫ dx =

Asin nπ x
L

⎛
⎝⎜

⎞
⎠⎟

2
L
sin nπ x

L
⎛
⎝⎜

⎞
⎠⎟

A2 sin2 nπ x
L

⎛
⎝⎜

⎞
⎠⎟0

L

∫ dx = 1



Quantized Energy
• The quantized wave number now becomes
• Solving for the energy yields

• Note that the energy depends on the integer values of n.
Hence the energy is quantized and nonzero.

• The special case of n = 1 is called the ground state energy.
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kn x( ) = nπ
L

=

En =

 
E1 =

π 22

2mL2

 
E2 =

2π 22

mL2

 
E3 =

9π 22

2mL2

 

2mEn

2

 
n2 π 22

2mL2    n = 1,2,3,( )

ψ n x( ) =
2
L
sin nπ x

L
⎛
⎝⎜

⎞
⎠⎟

ψ n
*ψ n = ψ n

2 =

2
L
sin2 nπ x

L
⎛
⎝⎜

⎞
⎠⎟

= 4E1

= 9E1



How does this correspond to Classical Mech.?
• What is the probability of finding a particle in a box of length L?
• Bohr’s correspondence principle says that QM and CM must 

correspond to each other!   When?
– When n becomes large, the QM approaches to CM

• So when nà∞, the probability of finding a particle in a 
box of length L is 

• Which is identical to the CM probability!!
• One can also see this from the plot of P!
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P x( ) =ψ
n

* x( )ψ n x( ) = ψ n x( ) 2 =
2
L
⋅ 1
2
= 1
L

1
L

2
L
lim
n→∞
sin2 nπ x

L
⎛
⎝⎜

⎞
⎠⎟ ≈

2
L
sin2 nπ x

L
⎛
⎝⎜

⎞
⎠⎟ =



Expectation Values & Operators
• Expectation value for any function g(x)

• Position operator is the same as itself, x
• Momentum Operator 

• Energy Operator
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g x( ) = Ψ x,t( )* g x( )Ψ x,t( )dx
−∞

+∞

∫

 
p̂ = −i ∂

∂x

 
Ê = i ∂

∂t



Determine the expectation values for x, x2, p and p2 of a particle in 
an infinite square well for the first excited state. 

Ex 6.8: Expectation values inside a box
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What is the wave function of the first excited state?  n=? 2
ψ n=2 x( ) =

x n=2 =

x2
n=2

=

p n=2 =

p2
n=2

=

E2 =

2
L
sin 2π x

L
⎛
⎝⎜

⎞
⎠⎟

ψ
n=2

* x( )xψ n=2 x( ) =
−∞

+∞

∫
2
L

xsin2 2π x
L

⎛
⎝⎜

⎞
⎠⎟0

L

∫ dx =
L
2

2
L

x2 sin2 2π x
L

⎛
⎝⎜

⎞
⎠⎟0

L

∫ dx = 0.32L2

 

2
L

sin 2π x
L

⎛
⎝⎜

⎞
⎠⎟ −i( ) ∂

∂x
sin nπ x

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0

L

∫ dx =
 
−i 2

L
2π
L

sin 2π x
L

⎛
⎝⎜

⎞
⎠⎟ cos

2π x
L

⎛
⎝⎜

⎞
⎠⎟0

L

∫ dx = 0

 

2
L

sin 2π x
L

⎛
⎝⎜

⎞
⎠⎟ −i( )2 ∂2

∂x2
sin 2π x

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0

L

∫ dx =
 
2
2
L
2π
L

⎛
⎝⎜

⎞
⎠⎟
2

sin2 2π x
L

⎛
⎝⎜

⎞
⎠⎟0

L

∫ dx =
 

4π 22

L2

 

4π 22

2mL2
=

p2
n=2

2m



A typical diameter of a nucleus is about 10-14m. Use the infinite square-well 
potential to calculate the transition energy from the first excited state to the 
ground state for a proton confined to the nucleus.

Ex 6.9: Proton Transition Energy
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The energy of the state n is 

n=1
 
En = n

2 π 22

2mL2

What is n for the ground state? 

 
E1 =

π 22

2mL2
= 1

mc2
π 2 ⋅ 197.3eV ⋅nm( )2

2 ⋅ 10−5nm( ) = 1.92 ×10
15eV 2

938.3×106eV
= 2.0MeV

 
E2 = 2

2 π 22

2mL2
=

ΔE = E2 − E1 = 6.0MeV

What is n for the 1st excited state? n=2

So the proton transition energy is

 

π 22c2

2mc2L2
=

8.0MeV



Finite Square-Well Potential
• The finite square-well potential is

• The Schrödinger equation outside the finite well in regions I and III is

for regions I and III, or using

yields . The solution to this differential has exponentials of the 
form eαx and e-αx.  In the region x > L, we reject the positive 
exponential and in the region x < 0, we reject the negative exponential.  
Why?

€ € 
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V x( ) =
V0       x ≤ 0,
0       0 < x < L
V0      x ≥ L

⎧
⎨
⎪

⎩⎪

 
− 

2

2m
1
ψ
d 2ψ
dx2

= E −V0( )  α
2 = 2m V0 − E( ) 2

d 2ψ
dx2

=α 2ψ

ψ I x( ) = Aeαx       region I, x < 0

ψ III x( ) = Ae−αx    region III, x > L

This is because the wave function 
should be 0 as xà±infinity.



• Inside the square well, where the potential V is zero and the particle is free, the 
wave equation becomes where 

• Instead of a sinusoidal solution we can write 

• The boundary conditions require that

and the wave function must be smooth where the regions meet.
• Note that the 

wave function is 
nonzero outside 
of the box.

• Non-zero at the 
boundary either..

• What would the 
energy look like?

Finite Square-Well Solution
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d 2ψ
dx2

= −k2ψ  k = 2mE 2

ψ II x( ) = Ceikx + De− ikx   region II,  0<x < L

ψ I =ψ II  at x = 0 and ψ II =ψ III  at x = L  



Penetration Depth
• The penetration depth is the distance outside the 

potential well where the probability significantly 
decreases. It is given by

• It should not be surprising to find that the penetration 
distance that violates classical physics is 
proportional to Planck’s constant.
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δ x ≈ 1
α

=
 



2m V0 − E( )



• The wave function must be a function of all three spatial coordinates. 

• We begin with the conservation of energy
• Multiply this by the wave function to get

• Now consider momentum as an operator acting on the wave function. 
In this case, the operator must act twice on each dimension. Given:

• The three dimensional Schrödinger wave equation is

Three-Dimensional Infinite-Potential Well
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E = K +V =

Eψ = p2

2m
+V

⎛
⎝⎜

⎞
⎠⎟
ψ =

p2

2m
ψ +Vψ

p2 = px
2 + py

2 + pz
2

 
− 

2

2m
∂2ψ
∂x2

+ ∂2ψ
∂y2

+ ∂2ψ
∂z2

⎛
⎝⎜

⎞
⎠⎟
+Vψ = Eψ

 
p̂yψ = −i ∂ψ

∂y  
p̂zψ = −i ∂ψ

∂z 
p̂xψ = −i ∂ψ

∂x

 
− 

2

2m
∇2ψ +Vψ = EψRewrite

p2

2m
+V



Consider a free particle inside a box with lengths L1, L2 and L3 along the x, y, and z axes,
respectively, as shown in the figure. The particle is constrained to be inside the box. Find
the wave functions and energies. Then find the ground energy and wave function and the
energy of the first excited state for a cube of sides L.

Ex 6.10: Expectation values inside a box
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What are the boundary conditions for this situation?

ψ x, y, z( ) = Asin k1x( )sin k2y( )sin k3z( )

Particle is free, so x, y and z wave functions are independent from each other!
Each wave function must be 0 at the wall! Inside the box, potential V is 0.

 
− 

2

2m
∇2ψ +Vψ = Eψ

A reasonable solution is 

ψ = 0 at x = L1 ⇒ k1L1 = n1π ⇒
k1 =

n1π
L1

Using the boundary 
condition

So the wave numbers are  k2 =
n2π
L2

k3 =
n3π
L3

k1 = n1π L1

 
⇒− 

2

2m
∇2ψ = Eψ



Consider a free particle inside a box with lengths L1, L2 and L3 along the x, y, and z axes, 
respectively, as shown in figure.  The particle is constrained to be inside the  box.  Find the 
wave functions and energies.  Then find the round energy and wave function and the energy 
of the first excited state for a cube of sides L. 

Ex 6.10: Expectation values inside a box
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The energy can be obtained through the Schrödinger equation

∂ψ
∂x

= ∂
∂x

Asin k1x( )sin k2y( )sin k3z( )( ) =
 
− 

2

2m
∇2ψ =

∂2ψ
∂x2

= ∂2

∂x2
Asin k1x( )sin k2y( )sin k3z( )( ) =

 
− 

2

2m
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
ψ =

 
E = 

2

2m
k1
2 + k2

2 + k3
2( ) =

 
− 

2

2m
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
ψ = Eψ

 

π 22

2m
n1
2

L1
2 +

n2
2

L2
2 +

n3
2

L3
2

⎛
⎝⎜

⎞
⎠⎟

What is the ground state energy?

When are the energies the same
for different combinations of ni?

E1,1,1 when n1=n2=n3=1, how much? 

2

2m
k1
2 + k2

2 + k3
2( )ψ = Eψ

k1Acos k1x( )sin k2y( )sin k3z( )

−k1
2Asin k1x( )sin k2y( )sin k3z( ) = −k1

2ψ



Degeneracy*
• Analysis of the Schrödinger wave equation in three 

dimensions introduces three quantum numbers that 
quantize the energy.

• A quantum state is degenerate when there is more 
than one wave function for a given energy.

• Degeneracy results from particular properties of the 
potential energy function that describes the system. 
A perturbation of the potential energy, such as the 
spin under a B field, can remove the degeneracy.
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*Mirriam-webster: having two or more states or subdivisions



The Simple Harmonic Oscillator
• Simple harmonic oscillators describe many physical situations: springs, diatomic molecules 

and atomic lattices.  

• Consider the Taylor expansion of a potential function:

The minimum potential at x=x0, so dV/dx=0 and V1=0; and the zero potential V0=0, we 
have

Substituting this into the wave equation:

Let and  which yields .
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V x( ) =V0 +V1 x − x0( ) + 1

2
V2 x − x0( )2 +

V x( ) = 1
2
V2 x − x0( )2

 

d 2ψ
dx2

= − 2m
2

E −κ x
2

2
⎛
⎝⎜

⎞
⎠⎟
ψ =

 
α 2 = mκ

2  
β = 2mE

2
d 2ψ
dx2

= α 2x2 − β( )ψ
 
− 2m
2

E + mκ x
2

2
⎛
⎝⎜

⎞
⎠⎟
ψ

F = −κ x − x0( )



Parabolic Potential Well

• If the lowest energy level is zero, this violates the uncertainty principle.
• The wave function solutions are where Hn(x) are Hermite

polynomial function of order n.
• In contrast to the particle in a box, where the oscillatory wave function is a sinusoidal

curve, in this case the oscillatory behavior is due to the polynomial, which dominates
at small x. The exponential tail is provided by the Gaussian function, which
dominates at large x.
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ψ n = Hn x( )e−αx2 2



Analysis of the Parabolic Potential Well

• The energy levels are given by

• The zero point energy is called the Heisenberg limit:

• Classically, the probability of finding the mass is 
greatest at the ends of motion’s range and smallest at 
the center (that is, proportional to the amount of time 
the mass spends at each position).

• Contrary to the classical one, the largest probability for 
this lowest energy state is for the particle to be at the 
center.
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En = n + 1

2
⎛
⎝⎜

⎞
⎠⎟  κ m =

 
E0 =

1
2
ω

 
n + 1

2
⎛
⎝⎜

⎞
⎠⎟ ω



Ex. 6.12: Harmonic Oscillator stuff
• Normalize the ground state wave function ψ0 for the

simple harmonic oscillator and find the expectation
values <x> and <x2>.
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ψ
0

*ψ 0 dx−∞

+∞

∫ = A2e−αx
2

dx
−∞

+∞

∫ = 2A2 e−αx
2

dx
0

+∞

∫ = 2A2 1
2

π
α

⎛

⎝⎜
⎞

⎠⎟
= 1

A2 = α
π

⇒ A = α
π

⎛
⎝⎜

⎞
⎠⎟
1 4

⇒ H0 x( ) = α
π

⎛
⎝⎜

⎞
⎠⎟
1 4

⇒ψ 0 x( ) = α
π

⎛
⎝⎜

⎞
⎠⎟
1 4

e−αx
2 2

x = ψ
0

*xψ 0 dx−∞

+∞

∫ = α
π

xe−αx
2

dx
−∞

+∞

∫ = 0

x2 = ψ
0

*x2ψ 0 dx−∞

+∞

∫ = α
π

x2e−αx
2

dx
−∞

+∞

∫ = 2 α
π

x2e−αx
2

dx
0

+∞

∫ = 2 α
π

π
4α 3 2

⎛

⎝⎜
⎞

⎠⎟
= 1
2α

 
x2 = 

2 mκ
⇒ω = κ m ⇒ x2 = 

2mω

ψ n x( ) = Hn x( )e−αx2 2 ⇒ψ 0 x( ) = H0 x( )e−αx2 2 = Ae−αx2 2



Barriers and Tunneling
• Consider a particle of energy E approaching a potential barrier of height V0 and the 

potential everywhere else is zero.
• We will first consider the case when the energy is greater than the potential barrier.
• In regions I and III the wave numbers are:

• In the barrier region we have
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kI = kIII =

2mE


 
kII =

2m E −V0( )


     where V =V0



Reflection and Transmission
• The wave function will consist of an incident wave, a reflected wave, and a transmitted 

wave.
• The potentials and the Schrödinger wave equation for the three regions are as 

follows:

• The corresponding solutions are:

• As the wave moves from left to right, we can simplify the wave functions to:
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Region I x < 0( )           V = 0            d

2ψ I

dx2 + 2m
2 Eψ I = 0

Region I x < 0( )           ψ I = Ae
ikI x + Be− ikI x

Incident wave          ψ I (incident) = AeikI x

 
Region II 0 < x < L( )   V =V0            d

2ψ II

dx2 + 2m
2 E −V0( )ψ II = 0

 
Region III x > L( )         V = 0             d

2ψ III

dx2 + 2m
2 Eψ III = 0

Region II 0 < x < L( )   ψ II = Ce
ikII x + De− ikII x

Region III x > L( )         ψ III = Fe
ikI x +Ge− ikI x

Reflected wave       ψ I (reflected) = Be− ikI x

Transmitted wave   ψ III (transmitted) = FeikI x


