PHYS 3313 – Section 001 Lecture #23

Wednesday, April 19, 2017 Dr. Jaehoon Yu

- Intrinsic Spin
- Equipartition Theorem
- Quantum Distributions

Announcements

- Reminder: Homework #5
 - CH6 end of chapter problems: 34, 46 and 65
 - CH7 end of chapter problems: 7, 9, 17 and 29
 - Due Monday, Apr. 24
- Reminder: Reading assignments
 - CH7.6 and the entire CH8
- Final Exam
 - In class, Monday, May 8
 - Comprehensive exam covers CH1.1 through what we finish today (CH8?)+ math refresher
 - BYOF
- Research presentation deadline is 8pm, Sunday, April 23
- Research paper deadline is Wednesday, April 26
- Reminder: Quadruple extra credit
 - Colloquium TODAY in UH108
 - Speaker: Dr. Nigel Lockyer, Director of Fermilab

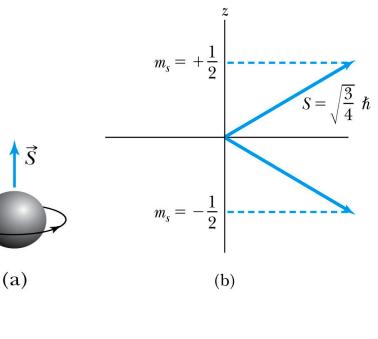
Presentation Judging Guidelines

- Contents of the presentation: 60
 - Inclusion of all important points as mentioned in the contents
 - The quality of the research and making the right points
- Quality of the presentation itself: 15
 - Does the presentation have necessary components, such as title page, outline?
 - Is the presentation coherent and to the point?
 - Are the slides high quality? Pictures in good resolution?
- Presentation manner: 10
 - Are the presenters professional?
 - Do they keep eye contact and the audience's attention?
- Q&A handling: 10
 - Do all the group members participate in Q&A?
 - Do the answers make sense and to the point?
- Staying in the allotted presentation time: 5
 - Did the presentation stay within the allotted time?
 - Did the answer drag along unnecessarily?
- Judging participation and sincerity: 5

Intrinsic Spin

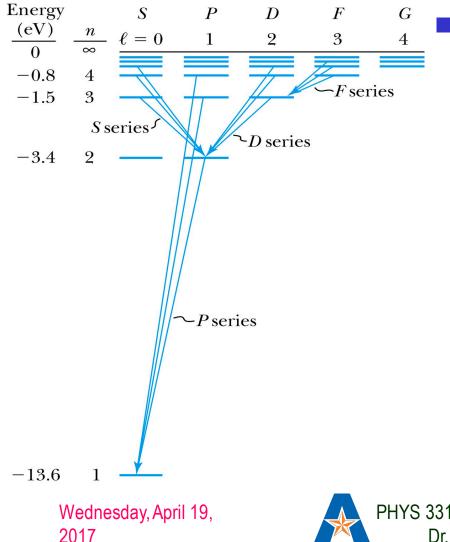
- In 1920, to explain spectral line splitting of Stern-Gerlach experiment, Wolfgang Pauli proposed the forth quantum number assigned to electrons
- In 1925, Samuel Goudsmit and George Uhlenbeck in Holland proposed that the <u>electron must have an intrinsic angular momentum</u> and therefore a magnetic moment.
- Paul Ehrenfest showed that the surface of the spinning electron should be moving faster than the speed of light to obtain the needed angular momentum!!
- In order to explain experimental data, Goudsmit and Uhlenbeck proposed that the electron must have an **intrinsic spin quantum number** $s = \frac{1}{2}$.

Intrinsic Spin


- The spinning electron reacts similarly to the orbiting electron in a magnetic field. (Dirac showed that this is necessary due to special relativity.)
- We should try to find L, L_z , ℓ , and m_{ℓ} .
- The magnetic spin quantum number m_s has only two values, $m_s = \pm \frac{1}{2}$.

The electron's spin will be either "up" or "down" and can never be spinning with its magnetic moment μ_s exactly along the z axis.

For each state of the other quantum numbers, there are two spin values The **intrinsic spin angular momentum**


vector
$$\left| \vec{S} \right| = \sqrt{s(s+1)}\hbar = \sqrt{3/4}\hbar$$

Energy Levels and Electron Probabilities

• For hydrogen, the energy level depends on the principle quantum number *n*.

In ground state an atom cannot emit radiation. It can absorb electromagnetic radiation, or gain energy through inelastic bombardment by particles.

Selection Rules

- We can use the wave functions to calculate transition probabilities for the electron to change from one state to another.
- Allowed transitions: Electrons absorbing or emitting photons can change states when $\Delta \ell = \pm 1$. (Evidence for the photon carrying one unit of angular momentum!)

 Δn =anything $\Delta \ell = \pm 1$ $\Delta m_{\ell} = 0, \pm 1$

Forbidden transitions: Other transitions possible but occur with much smaller probabilities when $\Delta \ell \neq \pm 1$.

