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PHYS 3313 – Section 001
Lecture #17

Wednesday, March 27, 2019
Dr. Jaehoon Yu

• Probability of Particle
• Schrodinger Wave Equation and Solutions
• Normalization and Probability
• Time Independent Schrodinger Equation
• Expectation Values
• Momentum, Position and Energy 

Operators
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Announcements
• Reminder for Homework #4: CH5 end of the chapter problems

– 8, 10, 16, 24, 26, 37 and 47
– Due: Monday Apr.  1, 2019

• Quiz #3
– Beginning of the class, Wednesday, Apr. 3
– Covers: CH4.8 through what we finish Monday, Apr. 1
– BYOF: You may bring a one 8.5x11.5 sheet (front and back) of 

handwritten formulae and values of constants for the exam
– No derivations, word definitions or setups or solutions of any 

problems!
• No Maxwell’s equations!

– No additional formulae or values of constants will be provided!
• Colloquium at 4pm today in SH101

– Dr. Kevin Pham of National Center for Atmospheric Research
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Special Project #6
• Derive the following using trigonometric identities

• 10 points total for this derivation
• Due for this special project is Wednesday, Apr. 3.
• You MUST have your own answers!
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The Copenhagen Interpretation
• Bohr’s interpretation of the wave function consisted 

of 3 principles:
1) The uncertainty principle of Heisenberg
2) The complementarity principle of Bohr
3) The statistical interpretation of Born, based on 

probabilities determined by the wave function
• Together, these three concepts form a logical 

interpretation of the physical meaning of quantum 
theory. According to the Copenhagen interpretation, 
physics depends on the outcomes of measurement.
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Particle in a Box
• A particle of mass m is trapped in a one-dimensional box of width l.
• The particle is treated as a wave. 
• The box puts boundary conditions on the wave. The wave function must be zero at the walls of 

the box and the outside of the box.
• In order for the probability to vanish at the walls, we must have an integral number of half 

wavelengths in the box.

– or

• The energy of the particle is .

• The possible wavelengths are quantized and thus yields the energy:

• The possible energies of the particle are quantized.
• Find the quantized energy level of an electron constrained to move in a 1-D atom of size 0.1nm.
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Probability of the Particle
• The probability of 

observing a particle 
between x and x + dx in 
each state is

• Note that E0 = 0 is not a 
possible energy level.

• The concept of energy 
levels, as first discussed 
in the Bohr model, has 
surfaced in a natural 
way by using waves.
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Pndx ∝ Ψn x( ) 2 dx



The Schrödinger Wave Equation
• Erwin Schrödinger and Werner Heisenberg (1932 

Nobel) proposed quantum theory in 1920
• The two proposed very different forms of equations
• Heisenberg: Matrix based framework
• Schrödinger: Wave mechanics, similar to the classical 

wave equation
• Paul Dirac and Schrödinger (1933 Nobel jointly) later

proved that the two give identical results
• The probabilistic nature of quantum theory is

contradictory to the direct cause and effect seen in
classical physics and makes it difficult to grasp!
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The Time-dependent Schrödinger Wave Equation
• The Schrödinger wave equation in its time-dependent 

form for a particle of energy E moving in a potential V in 
one dimension is

• The extension into three dimensions is

• where is an imaginary number
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The wave equation must be linear so that the superposition principle can be used to form a 
wave packet.  Prove that the wave function in Schrödinger equation is linear by showing that 
it is satisfied by the wave equation Ψ (x,t)=aΨ1 (x,t)+bΨ2 (x,t) where a and b are constants 
and Ψ1 (x,t) and Ψ2 (x,t) describe two waves each satisfying the Schrödinger Eq.

Ex 6.1: Wave equation and Superposition
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General Solution of the Schrödinger 
Wave Equation

• The general form of the solution of the Schrödinger wave 
equation is given by:

• which also describes a wave propagating in the x direction. In 
general the amplitude may also be complex. This is called the 
wave function of the particle.

• The wave function is also not restricted to being real. Only the 
physically measurable quantities (or observables) must be 
real. These include the probability, momentum and energy.
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Ψ x,t( ) = Aei kx−ωt( ) = A cos kx −ωt( ) + isin kx −ωt( )⎡⎣ ⎤⎦



Show that Aei(kx-ωt) satisfies the time-dependent Schrödinger wave Eq. 
Ex 6.2: Solution for Wave Equation
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The wave number: k = 2π

λ
= 2π
h p

= 2π p
h

= p
  The momentum: p = k

From the energy conservation: E = K +V = p2

2m
+V

So Aei(kx-ωt) is a good solution and satisfies the Schrödinger Eq.



Determine whether Ψ (x,t)=Asin(kx-ωt) is an acceptable solution for the 
time-dependent Schrödinger wave Eq. 

Ex 6.3: Bad Solution for Wave Equation
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Schrödinger Eq. Is it for the classical wave eq.                                 ?
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Normalization and Probability
• The probability P(x) dx of a particle being between x and 

X + dx was given by the equation

• Here Ψ* denotes the complex conjugate of Ψ
• The probability of the particle being between x1 and x2 is 

given by

• The wave function must also be normalized so that the 
probability of the particle being somewhere on the x axis 
is 1.
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P x( )dx = Ψ* x,t( )Ψ x,t( )dx

P = Ψ*Ψdx
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Consider a wave packet formed by using the wave function that Ae-α|x|, 
where A is a constant to be determined by normalization.  Normalize this 
wave function and find the probabilities of the particle being between 0 and 
1/α, and between 1/α and 2/α.  

Ex 6.4: Normalization
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Using the wave function, we can compute the probability for a particle to be 
in 0 to 1/α and 1/α to 2/α.

Ex 6.4: Normalization, cont’d
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Ψ = α e−α x

P = Ψ*

0

1 α

∫ Ψdx =

For 0 to 1/α:

For 1/α to 2/α:

How about 2/α:to ∞?
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