PHYS 3313 — Section 001
Lecture #18

Monday, April 1, 2019
Dr. Jaehoon Yu

* Time Independent Schrodinger Equation
* Expectation Values

*  Momentum Operator

» Position and Energy Operators

* Infinite Square-well Potential
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Announcements
* Bring out HW#4

o Quiz #3

— Beginning of the class, Wednesday, Apr. 3
— Covers: CH4.8 through what we finish Monday, Apr. 1

— BYOF: You may bring a one 8.5x11.5 sheet (front and back) of
handwritten formulae and values of constants for the exam

— No derivations, word definitions or setups or solutions of any

problems!
« No Maxwell’'s equations!

— No additional formulae or values of constants will be provided!

* A special colloquium at 4pm today in SH101
— Dr. Dora Muesielak of UTA
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Starting with an overview of rocket propulsion, 1 will introduce spacecraft trajectories in the
Sun-Earth-Moon System, focusing especially on those appropriate for exoplanet hunting
missions. One type of heliocentric orbit about a libration point, known as halo orbit, was
selected for the Wide Field Infrared Survey Telescope (WFIRST) and the James Webb Space
Telescope (JWST). The mission objectives of these spacecraft are to search for exoplanets while
studying dark matter, and to study atmospheres of known exoplanets, respectively. Another
unique spacecraft trajectory concept is the lunar-resonant High Earth Orbit (HEO) chosen for
the Transiting Exoplanet Survey Satellite (TESS), whose mission objective is to examine over
85% of the sky, an area 400 times larger than what the Kepler telescope observed. | will also
include a unique halo orbit on a radio-quiet zone located on the farside of the Moon.

MONDAY 4:00 pm
1 APRIL 101 Science Hall

Mon. Apr$YE&§BODY WELCOME! H@§§1§651 eplfl'lntgs gll be served at 3:30 p.m. 3
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Reminder: Special Project #5

* Prove that the wave function W=A[sin(kx-
wt)+icos(kx-wt)] is a good solution for the time-
dependent Schrodinger wave equation. Do NOT
use the exponential expression of the wave
function. (10 points)

» Determine whether or not the wave function
P=Ae-oX satisfy the time-dependent Schrodinger
wave equation. (10 points)

 Due for this special project is Wednesday, Apr. 3.
* You MUST have your own answers!
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Reminder: Special Project #6

Derive the following using trigonometric identities
Acos(klx — a)lt) + Acos(kzx — a)zt) =

— — + +
2Acos(k1 kzx—w1 i t)cos(kl kzx—w1 © t)z
2 2 2 2

10 points total for this derivation
Due for this special project is Monday, Apr. 8.
You MUST have your own answers!
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Normalization and Probability

The probability P(x) dx of a particle being between x
and X + dx was given by the equation

P(x)dx =¥ (x,t)‘l’(x,t)dx
Here W* denotes the complex conjugate of ¥

The probability of the particle being between x; and x,
IS given by Yy .
P = J Y Ydx

The wave function must also be normalized so that the

probability of the particle being somewhere on the x

axis is 1. b
LO ¥ (o, ) W (x,t)dx =1
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Ex 6.4: Normalization

Consider a wave packet formed by using the wave function that Ae X
where A is a constant to be determined by normalization. Normalize this
wave function and find the probabilities of the partlcle being between 0 and
1/a, and between 1/a and 2/a.

P = A M

Probabilit

y density
2 oo 9)
oo oo 2A A
2 =2 _ )
= A e OC|x|dx 2‘[ A2€ ZOtxdx: e ox — O+—_ 1
$ A =\ 04 Normalized Wave Function > \P / e_a|x|
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Ex 6.4: Normalization, cont’d

Using the wave function, we can compute the probablllty for a particle to be

Wave function

with 0 to 1/a and 1/a to 2/a.
N 4 el
¥ = Jae ™
For0to 1/ 5 3 5 2 1 o 1 é\%;\—% ”
1/l()xositlon
o . oo o . 1, _
P=["wwar=["ae*d= ——e* =-—(e?-1)= 0432
0 0 =20
For 1/ato 2/a:
2/
Ja 2/ox O o 1
wrwar= [Caedv=——e™| =—=(e*—e?)=0059
1o 1o —20 Ve 2

How about 2/a:to «?
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Properties of a Valid Wave Function

Boundary conditions

1) To avoid infinite probabilities, the wave function must be finite
everywhere.

2) To avoid multiple values of the probability, the wave function must be
single valued.

3) For afinite potential, the wave function and its derivatives must be
continuous. This is required because the second-order derivative
term in the wave equation must be single valued. (There are
exceptions to this rule when Vis infinite.)

4) In order to normalize the wave functions, they must approach zero
as x approaches infinity.

Solutions that do not satisfy these properties do not generally
correspond to physically realizable circumstances.
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Time-Independent Schrodinger Wave Equation

* The potential in many cases will not depend explicitly on time.

 The dependence on time and position can then be separated
in the Schrodinger wave equation. Let, ¥ (x,¢) =y (x)f(¢)

which yields: iy (x) 2L _ P S@IW) y v (0 £(r)
ot 2m  0x’
Now divide by the wave function: # f(t) af)‘ z;w(lx)azg’;ﬁ")w(x)

* The left side of this last equation depends only on time, and
the right side depends only on spatial coordinates. Hence each
side must be equal to a constant. The time dependent side Is
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Time-Independent Schrodinger Wave Equation(con't)

We integrate both sides and find: ,hj'd% - JBdt — ihlnf=Bt+C

where C is an integration constant that we may choose to be 0.
Therefore In f — Bt
"=
l

This determines fto be f(¢)=e™" =¢™/"  Comparing this to the
time dependent portion of the free particle wave function e = ¢™"#/"

= B=hw=E E> 9 _p
f(t) ot

This is known as the time-independent Schrodinger wave
equation, and it is a fundamental equation in quantum mechanics.

IV (1) ()= By ()
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Stationary State

+ Recalling the separation of variables: ¥(x.t)=w(x)f(z)
and with f(z)=e™" the wave function can be
written as:  W(x,t)=wy(x)e ™
* The probability density becomes:

W =y (x)(e”e ™) =y (1)

* The probability distributions are constant in time.
This Is a standing wave phenomena that is called the
stationary state.
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Comparison of Classical and
Quantum Mechanics

m Newton’s second law and Schrodinger's wave
equation are both differential equations.

m Newton'’s second law can be derived from the
Schrodinger wave equation, so the latter is the more
fundamental.

m Classical mechanics only appears to be more precise
because It deals with macroscopic phenomena. The
underlying uncertainties in macroscopic
measurements are just too small to be significant.
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Expectation Values

 The expectation value is the expected result of the average

of many measurements of a given quantity. The expectation
value of x is denoted by <x>.

* Any measurab
expectation va
expectation va

e quantity for which we can calculate the
ue is called the physical observable. The
ues of physical observables (for example,

position, linear momentum, angular momentum, and energy)
must be real, because the experimental results of
measurements are real.

ZNl.xi

» The average value of xis 3= XXt No% + Vo, # Ny, 00 7
N +N,+N;+N,+-- ENi
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Continuous Expectation Values

* We can change from discrete to

continuous variables by using - _Lo xP(x)dx
the probability P(x,f) of T [ P(x)dx
observing the particle at the e
particular x. +°o
+ Using the wave function, the - Lo W (x,1) W(x,1)dx
expectation value is: T rw‘P (xr.1) W (x.t)dn
* The expectation value of any ~ ’ ’
function g(x) for a normalized
wave function: (g(x))=[ W (x.r) g(x) ¥ (x.r)dx
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Momentum Operator

To find the expectation value of p, we first need to represent p in
terms of x and t. Consider the derivative of the wave function of a
free particle with respect to x:

OV O ko) . ikeor)
a—x—a—x[e :I— ike = k¥
With k=p/h we have 9F _ . P
ox
This yields (1) ] = —ip OrA!)
pl: :I ox

0

This suggests we define the momentum operatoras  p =—jh—
The expectation value of the momentum is ox

)= [ W ()P (xr)dx = —in ‘P(xt)alp(xr

’ )dx

0x
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Position and Energy Operators

m [he position x Is its own operator as seen above.
m The time derivative of the free-particle wave function

IS
a; ;t[ ) = iwe ™) = —in¥
Substituting w = E/ h vyields E| ¥ (x,t) |=in a‘P;f’t)
o~ 0
m S0 the energy operatoris E = lhg
m [he expectation value of the energy is
roo ~ o g 0P (x,1)
= | W (x)E¥ (xt)dx=in| W (x.r) = d
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