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PHYS 3313 – Section 001
Lecture #19

Wednesday, April 3, 2019
Dr. Jaehoon Yu

• Momentum Operator 
• Position and Energy Operators
• Infinite Square-well Potential
• Quantized Energy
• Finite Square-well Potential
• Penetration Depth
• 3D Infinite Potential
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Announcements
• Bring out SP#5
• Homework #5

– CH6 end of chapter problems: 34, 46 and 65
– CH7 end of chapter problems: 7, 9, 17 and 29
– Due Monday, Apr. 15

• Colloquium at 4pm today in SH101
– Dr. Antonia Hubbard of Northwestern University
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Reminder: Special Project #6
• Derive the following using trigonometric identities

• 10 points total for this derivation
• Due for this special project is Monday, Apr. 8.
• You MUST have your own answers!
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Special Project #7
• Show that the Schrodinger wave equation 

becomes Newton’s second law in the 
classical limit.  (15 points)

• Deadline Wednesday, Apr. 17
• You MUST have your own answers!
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Momentum Operator
• To find the expectation value of p, we first need to represent p in 

terms of x and t. Consider the derivative of the wave function of a 
free particle with respect to x:

With k = p / ħ we have

This yields

• This suggests we define the momentum operator as .
• The expectation value of the momentum is
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Position and Energy Operators
n The position x is its own operator as seen above.
n The time derivative of the free-particle wave function 

is

Substituting ω = E / ħ yields

n So the energy operator is
n The expectation value of the energy is
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Infinite Square-Well Potential
• The simplest such system is that of a particle trapped in a 

box with infinitely hard walls that the particle cannot 
penetrate. This potential is called an infinite square well 
potential and is given by

• The wave function must be zero where the potential is 
infinite.

• Where the potential is zero inside the box, the time 
independent Schrödinger wave equation                                            
becomes where .

• The general solution is                 .
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V x( ) = ∞      x ≤ 0, x ≥ L
0       0 < x < L

⎧
⎨
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d 2ψ
dx2

= − 2mE
2

ψ  k = 2mE 2

ψ x( ) = Asin kx + Bcoskx
= −k2ψ

 
− 
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2m
d 2ψ x( )
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+V x( )ψ x( ) = Eψ x( )



Quantization
• Since the wave function must be continuous, the boundary conditions

of the potential dictate that the wave function must be zero at x = 0
and x = L. These yield B=0 for valid solutions for, and for integer
values of n such that kL = nπè k=nπ/L

• The wave function is now

• We normalize the wave function
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Details of the computation

Wed. April 3, 2019 PHYS 3313-001, Spring 2019                      
Dr. Jaehoon Yu

10

Let y = nπ x
L
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Quantization, cnt’d
• Since the wave function must be continuous, the boundary conditions

of the potential dictate that the wave function must be zero at x = 0
and x = L. These yield B=0 for valid solutions for, and for integer
values of n such that kL = nπè k=nπ/L

• The wave function is now

• We normalize the wave function

• The normalized wave function becomes

• These functions are identical to those obtained for a vibrating string
with fixed ends (a standing wave!!)
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Quantized Energy
• The quantized wave number now becomes
• Solving for the energy yields

• Note that the energy depends on the integer values of n.
Hence the energy is quantized and nonzero.

• The special case of n = 1 is called the ground state energy.
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How does this correspond to Classical Mech.?
• What is the probability of finding a particle in a box of length L?
• Bohr’s correspondence principle says that QM and CM must 

correspond to each other!   When?
– When n becomes large, the QM approaches to CM

• So when nà∞, the probability of finding a particle in a 
box of length L is 

• Which is identical to the CM probability!!
• One can also see this from the plot of P!
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