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PHYS 3313 – Section 001
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• Schrodinger Equations on Hydrogen Atom
• Hydrogen Atom Wave Functions
• Solution for Radial Equations
• Solution for Angular and Azimuthal Equations
• Angular Momentum Quantum Numbers
• Magnetic Quantum Numbers
• Zeeman Effects
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Announcements
• Bring out HW#5
• Reading assignments

– CH7.2, CH7.6 and the entire CH8
• Presentations next Monday and Wednesday
• Research presentation deadline is 8pm, Sunday, 

April 21
• Research paper deadline is Wednesday, 4/24
• You guys have done a marvelous job at the workshop 

last week!   Everyone complimented how good you all 
were!   Let’s hit this week’s workshop out of the 
ballpark! 
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Reminder: Special Project #7
• Show that the Schrodinger wave equation 

becomes Newton’s second law in the 
classical limit.  (15 points)

• Deadline this Wednesday, Apr. 17
• You MUST have your own answers!
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Application of the Schrödinger Equation to the 
Hydrogen Atom

• The approximation of the potential energy of the electron-
proton system is the Coulomb potential: 

• To solve this problem, we use the three-dimensional time-
independent Schrödinger Wave Equation.

• For Hydrogen-like atoms with one electron (He+ or Li++)
• Replace e2 with Ze2 (Z is the atomic number)

• Use the appropriate reduced mass μ
Mon. April 15, 2019 4PHYS 3313-001, Spring 2019                      

Dr. Jaehoon Yu

V r( ) = e2

4πε0r
−

 
− 

2

2m
1

ψ x, y, z( )
∂2ψ x, y, z( )

∂x2
+
∂2ψ x, y, z( )

∂y2
+
∂2ψ x, y, z( )

∂z2
⎛
⎝⎜

⎞
⎠⎟
= E −V r( )

µ = m1m2

m1 +m2

⎛
⎝⎜

⎞
⎠⎟



Application of the Schrödinger Equation
n The potential (central force) V(r) depends on the distance r

between the proton and electron.
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x = r sinθ cosφ • Transform to spherical polar 
coordinates to exploit the radial 
symmetry.

• Insert the Coulomb potential into 
the transformed Schrödinger 
equation.

y = r sinθ sinφ
z = r cosθ

r = x2 + y2 + z2

θ = cos−1 z
r

polar angle( )

φ = tan−1 y
x
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Application of the Schrödinger Equation

• The wave function ψ is a function of r, q and φ .
The equation is separable into three equations of 

independent variables
The solution may be a product of three functions.

• We can separate the Schrodinger equation in polar 
coordinate into three separate differential equations, each 
depending only on one coordinate: r, q, or φ .
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Solution of the Schrödinger Equation for Hydrogen
• Substitute ψ into the polar Schrodinger equation and separate the 

resulting equation into three equations: R(r), f(θ), and g(φ).
Separation of Variables
• The derivatives in Schrodinger eq. can be written as

• Substituting them into the polar coord. Schrodinger Eq.

• Multiply both sides by r2 sin2 θ / Rfg
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Solution of the Schrödinger Equation
• Only r and θ appear on the left-hand side and only φ appears 

on the right-hand side of the equation
• The left-hand side of the equation cannot change as φ

changes.
• The right-hand side cannot change with either r or θ.
• Each side needs to be equal to a constant for the equation to 

be true in all cases.  Set the constant −mℓ
2 equal to the right-

hand side of the reorganized equation

– The sign in this equation must be negative for a valid solution 
• It is convenient to choose a solution to be          .

-------- azimuthal equation
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Solution of the Schrödinger Equation
• satisfies the previous equation for any value of mℓ.
• The solution must be single valued in order to have a valid solution 

for any φ, which requires

• mℓ must be zero or an integer (positive or negative) for this to work
• Now, set the remaining equation equal to −mℓ

2 and divide either 
side with sin2θ and rearrange them as 

• Everything depends on r on the left side and θ on the right side of 
the equation.
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eimlφ

g φ( ) = g φ + 2π( )
g φ = 0( ) = g φ = 2π( ) e0 = e2π iml
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Solution of the Schrödinger Equation
• Set each side of the equation equal to constant ℓ(ℓ + 1).

– The Radial Equation

– The Angular Equation

• Schrödinger equation has been separated into three ordinary 
second-order differential equations, each containing only one 
variable.
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Solution of the Radial Equation
• The radial equation is called the associated Laguerre

equation, and the solutions R that satisfies the appropriate 
boundary conditions are called associated Laguerre
functions.

• Assume the ground state has ℓ = 0, and this requires mℓ = 0.
We obtain

• The derivative of             yields two terms, and we obtain
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Solution of the Radial Equation
• Let’s try a solution                     where A is a normalization constant, 

and a0 is a constant with the dimension of length.
• Take derivatives of R, we obtain.

• To satisfy this equation for any r, each of the two expressions in 
parentheses must be zero.

• Set the second parentheses equal to zero and solve for a0.

• Set the first parentheses equal to zero and solve for E.

• Both equal to the Bohr’s results
Mon. April 15, 2019 12PHYS 3313-001, Spring 2019                      

Dr. Jaehoon Yu

R = Ae−r a0

 

1
a0
2 +

2µ
2

E
⎛
⎝⎜

⎞
⎠⎟
+

2µe2

4πε0
2 −

2
a0

⎛
⎝⎜

⎞
⎠⎟
1
r
= 0

 
a0 =

4πε0
2

µe2

E =

Bohr’s radius

Ground state energy 
of the hydrogen atom 

−E0 = −13.6eV
 
−
2

2µa0
2 =



Principal Quantum Number n
• The principal quantum number, n, results from the 

solution of R(r) in the separate Schrodinger Eq. since 
R(r) includes the potential energy V(r).
The result for this quantized energy is

• The negative sign of the energy E indicates that the 
electron and proton are bound together.

Mon. April 15, 2019 13PHYS 3313-001, Spring 2019                      
Dr. Jaehoon Yu

En =
 
− µ
2

e2

4πε0
⎛
⎝⎜

⎞
⎠⎟

2
1
n2

= − E0
n2



Quantum Numbers
• The full solution of the radial equation requires an introduction 

of a quantum number, n, which is a non-zero positive integer.
• The three quantum numbers:

– n Principal quantum number
– ℓ Orbital angular momentum quantum number
– mℓ Magnetic quantum number

• The boundary conditions put restrictions on these
– n = 1, 2, 3, 4, . . . (n>0) Integer
– ℓ = 0, 1, 2, 3, . . . , n − 1 (0=<ℓ < n)  Integer
– mℓ = −ℓ, −ℓ + 1, . . . , 0, 1, . . . , ℓ − 1, ℓ (|mℓ| ≤ ℓ)    Integer

• The predicted energy level is
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What are the possible quantum numbers for the state n=4 in 
atomic hydrogen?  How many degenerate states are there?

Ex 7.3: Quantum Numbers & Degeneracy
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n ℓ mℓ
4 0 0
4 1 -1, 0, +1
4 2 -2, -1, 0, +1, +2
4 3      -3, -2, -1, 0, +1, +2, +3

The energy of an atomic hydrogen state is determined only by 
the primary quantum number, thus, all these quantum states, 
1+3+5+7 = 16, are in the same energy state. 
Thus, there are 16 degenerate states for the state n=4.


