PHYS 3313 – Section 001 Lecture #23

Wednesday, April 17, 2019 Dr. Jaehoon Yu

- Solution for Angular and Azimuthal Equations
- Angular Momentum Quantum Numbers
- Magnetic Quantum Numbers
- Zeeman Effects
- Intrinsic Spin

Announcements

- Bring out SP#7
- Reminder: Reading assignments
 - CH7.2, CH7.6 and the entire CH8
- Presentations coming Monday and Wednesday
- Research presentation PPT files due 8pm, this Sunday, April 21
- Research paper deadline is Wednesday, 4/24

Hydrogen Atom Radial Wave Functions

- The radial solution is specified by the values of n and \ell
- First few radial wave functions R_{nℓ}

Table	7.1	Hydrogen Atom Radial Wave Functions
n	ℓ	$R_{n\ell}(r)$
1	0	$\frac{2}{(a_0)^{3/2}}e^{-r/a_0}$
2	0	$\left(2-rac{r}{a_0} ight)\!rac{e^{-r/2a_0}}{(2a_0)^{3/2}}$
2	1	$rac{r}{a_0} rac{e^{-r/2a_0}}{\sqrt{3}(2a_0)^{3/2}}$
3	0	$\frac{1}{(a_0)^{3/2}} \frac{2}{81\sqrt{3}} \left(27 - 18\frac{r}{a_0} + 2\frac{r^2}{{a_0}^2}\right) e^{-r/3a_0}$
3	1	$\frac{1}{(a_0)^{3/2}} \frac{4}{81\sqrt{6}} \left(6 - \frac{r}{a_0}\right) \frac{r}{a_0} e^{-r/3a_0}$
3	2	$\frac{1}{(a_0)^{3/2}} \frac{4}{81\sqrt{30}} \frac{r^2}{{a_0}^2} e^{-r/3a_0}$

Solution of the Angular and Azimuthal Equations

- The solutions for azimuthal eq. are $e^{im_l\phi}$ or $e^{-im_l\phi}$
- Solutions to the angular and azimuthal equations are linked because both have m_{ℓ}

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{df}{d\theta} \right) + \left[l(l+1) - \frac{m_l^2}{\sin^2\theta} \right] f = 0 \qquad \text{------- angular equation}$$

$$\frac{d^2g}{d\phi^2} = -m_l^2g \qquad \qquad \text{-------- azimuthal equation}$$

Group these solutions together into functions

$$Y_{lm_l}(\theta,\phi) = f(\theta)g(\phi)$$

---- spherical harmonics

Normalized Spherical Harmonics

Table 7	.2 Norm	nalized Spherical Harmonics $Y(heta, \ \phi)$
ℓ	m_ℓ	$Y_{\ell m_\ell}$
0	0	$\frac{1}{2\sqrt{\pi}}$
1	0	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta$
1	±1	$\mp \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta \ e^{\pm i\phi}$
2	0	$\frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta-1)$
2	±1	$\mp \frac{1}{2} \sqrt{\frac{15}{2\pi}} \sin \theta \cos \theta \ e^{\pm i\phi}$
2	±2	$\frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta\ e^{\pm 2i\phi}$
3	0	$\frac{1}{4}\sqrt{\frac{7}{\pi}}(5\cos^3\theta - 3\cos\theta)$
3	±1	$\mp \frac{1}{8} \sqrt{\frac{21}{\pi}} \sin \theta (5 \cos^2 \theta - 1) e^{\pm i\phi}$
3	±2	$\frac{1}{4}\sqrt{\frac{105}{2\pi}}\sin^2\theta\cos\theta\ e^{\pm2i\phi}$
3	±3	$\mp \frac{1}{8} \sqrt{\frac{35}{\pi}} \sin^3 \theta \ e^{\pm 3i\phi}$

Ex 7.1: Spherical Harmonic Function

Show that the spherical harmonic function $Y_{11}(\theta, \phi)$ satisfies the angular Schrodinger equation.

$$Y_{11}(\theta,\phi) = -\frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta e^{i\phi} = A\sin\theta$$

Inserting l = 1 and $m_l = 1$ into the angular Schrodinger equation, we obtain

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dY_{11}}{d\theta} \right) + \left[1(1+1) - \frac{1}{\sin^2\theta} \right] Y_{11} = \frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dY_{11}}{d\theta} \right) + \left(2 - \frac{1}{\sin^2\theta} \right) Y_{11}$$

$$= \frac{A}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d \sin \theta}{d\theta} \right) + A \left(2 - \frac{1}{\sin^2 \theta} \right) \sin \theta = \frac{A}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \cos \theta \right) + A \left(2 - \frac{1}{\sin^2 \theta} \right) \sin \theta$$

$$= \frac{A}{\sin \theta} \frac{d}{d\theta} \left(\frac{1}{2} \sin 2\theta \right) + A \left(2 - \frac{1}{\sin^2 \theta} \right) \sin \theta = \frac{A}{\sin \theta} \cos 2\theta + A \left(2 - \frac{1}{\sin^2 \theta} \right) \sin \theta$$

$$= \frac{A}{\sin \theta} \left(1 - 2\sin^2 \theta \right) + A \left(2 - \frac{1}{\sin^2 \theta} \right) \sin \theta = \frac{A}{\sin \theta} - 2A\sin \theta + A \left(2 - \frac{1}{\sin^2 \theta} \right) \sin \theta = 0$$

Solutions for the Angular and Azimuthal Equations

- The radial wave function R and the spherical harmonics Y determine the probability density for the various quantum states.
- Thus the total wave function $\psi(r,\theta,\varphi)$ depends on n, ℓ , and m_{ℓ} . The wave function can be written as

$$\psi_{nlm_l}(r,\theta,\phi) = R_{nl}(r)Y_{lm_l}(\theta,\phi)$$

Orbital Angular Momentum Quantum Number &

- Orbital Angular Momentum Quantum Number ℓ is associated with the R(r) and $f(\theta)$ parts of the wave function.
- Classically, the orbital angular momentum $\vec{L} = \vec{r} \times \vec{p}$ with $L = mv_{\text{orbital}}r$.
- ℓ is related to the magnitude of L by $L = \sqrt{l(l+1)}\hbar$
- In an $\ell = 0$ state, $L = \sqrt{0(1)}\hbar = 0$.

It disagrees with Bohr's semi-classical "planetary" model of electrons orbiting a nucleus $L = n\hbar$.

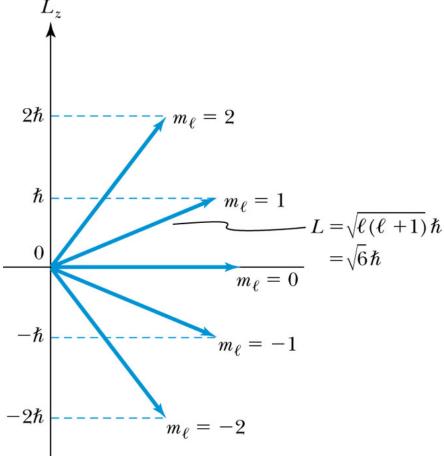
Orbital Angular Momentum Quantum Number &

- Certain energy level is degenerate with respect to \ell when the energy is independent of \ell.
- Use letter names for the various \(\ext{Values} \)

```
-\ell = 0 1 2 3 4 5...

- Letter = s p d f q h...
```

- Atomic states are referred by their n and l
 - s=sharp, p=principal, d=diffuse, f =fundamental, then in alphabetical order afterward
- A state with n = 2 and $\ell = 1$ is called the 2p state
 - Is 2d state possible?
- The boundary conditions require n > ℓ



Magnetic Quantum Number m_e

- The angle ϕ is a measure of the rotation about the z axis.
- The solution for $g(\phi)$ specifies that m_ℓ is an integer and related to the z component of L.

$$L_z = m_l \hbar$$

- The relationship of L, L_z , ℓ , and m_{ℓ} for $\ell = 2$.
- $L = \sqrt{l(l+1)}\hbar = \sqrt{6}\hbar$ is fixed.
- Because L_z is quantized, only certain orientations of \vec{L} are possible and this is called **space quantization**.
- m_{ℓ} is called the magnetic moment since z axis is chosen customarily along the direction of magnetic field.

Magnetic Quantum Number m_ℓ

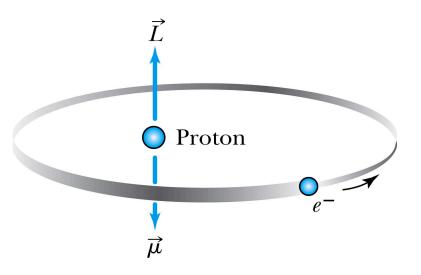
- Quantum mechanics allows L to be quantized along only one direction in space and because of the relationship $L^2 = L_x^2 + L_y^2 + L_z^2$, once a second component is known, the third component will also be known. \rightarrow violation of uncertainty principle
 - One of the three components, such as L_z, can be known clearly but the other components will not be precisely known
- Now, since we know there is no preferred direction,

$$\langle L_x^2 \rangle = \langle L_y^2 \rangle = \langle L_z^2 \rangle$$

• We expect the average of the angular momentum components squared to be: $\langle L^2 \rangle = 3 \langle L_z^2 \rangle = \frac{3}{2l+1} \sum_{m=-l}^{+l} m_l^2 \hbar^2 = l(l+1)\hbar^2$

Magnetic Effects on Atomic Spectra— The Normal Zeeman Effect

 A Dutch physicist Pieter Zeeman showed as early as 1896 that the spectral lines emitted by atoms in a magnetic field split into multiple energy levels. It is called the Zeeman effect.


The Normal Zeeman effect:

- A spectral line of an atom is split into <u>three</u> lines.
- Consider the atom to behave like a small magnet.
- The current loop has a magnetic moment μ = IA and the period T = $2\pi r / v$. If an electron can be considered as orbiting a circular current loop of I = dq / dt around the nucleus, we obtain

$$\mu = IA = qA/T = \pi r^2 (-e)/(2\pi r/v) = -erv/2 = -\frac{e}{2m}mrv = -\frac{e}{2m}L$$

• $\vec{\mu} = -\frac{e}{2m}\vec{L}$ where L = mvr is the magnitude of the orbital angular momentum

PHYS 3313-001, Spring 2019
Dr. Jaehoon Yu

- In the absence of an external magnetic field to align them, $\vec{\mu}$ points random directions.
- The dipole has a potential energy

$$V_{B} = -\overrightarrow{\mu} \cdot \overrightarrow{B}$$

• The angular momentum is aligned with the magnetic moment, and the torque between μ and B causes a precession of μ .

$$\mu_z = \frac{e}{2m}L_z = \frac{e\hbar}{2m}m_l = -\mu_B m_l$$

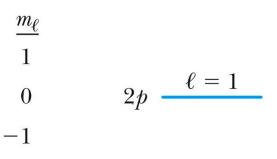
Where $\mu_B = e\hbar / 2m$ is called the Bohr magneton.

• μ cannot align exactly in the z direction and has only certain allowed quantized orientations.

$$\vec{\mu} = -\frac{\mu_B L}{\hbar}$$

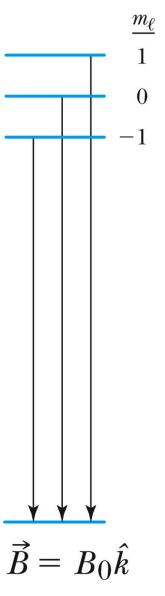
• The potential energy is quantized due to the magnetic quantum number m_{ℓ} .

$$V_B = -\mu_z B = +\mu_B m_l B$$

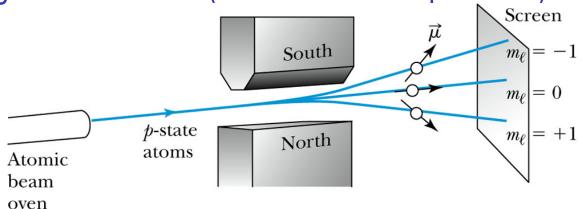

• When a magnetic field is applied, the 2p level of atomic hydrogen is split into three different energy states with the electron energy difference of $\Delta E = \mu_B B \Delta m_\ell$.

mℓ	Energy
1	$E_0 + \mu_B B$
0	E_0
-1	$E_0 - \mu_B B$

$$n = 2 \qquad \frac{\ell = 1}{\vec{B} = 0}$$


So split is into a total of 2l+1 energy states

- A transition from 1s to 2p
- A transition from 2p to 1s


$$1s \frac{\ell = 0}{\vec{R}} = 0$$

$$\begin{array}{c}
1s & \overrightarrow{R} = 0 \\
\overrightarrow{B} = 0
\end{array}$$

(b)

• An atomic beam of particles in the $\ell = 1$ state pass through a magnetic field along the z direction. (Stern-Gerlach experiment)

•
$$V_B = -\mu_z B$$

•
$$F_z = -(dV_B/dz) = \mu_z(dB/dz)$$

- The m_{ℓ} = +1 state will be deflected down, the m_{ℓ} = -1 state up, and the m_{ℓ} = 0 state will be undeflected. \rightarrow saw only 2 with silver atom
- If the space quantization were due to the magnetic quantum number m_{ℓ} , the number of m_{ℓ} states is always odd at $(2\ell + 1)$ and should have produced an odd number of lines.

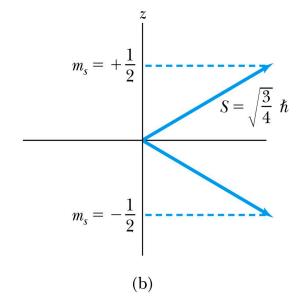
 Mon. April 22, 2019

 PHYS 3313-001

PHYS 3313-001, Spring 2019 Dr. Jaehoon Yu

Intrinsic Spin

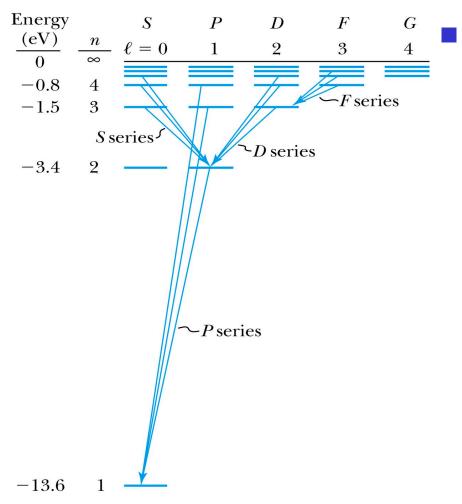
- In 1920, to explain spectral line splitting of Stern-Gerlach experiment, Wolfgang Pauli proposed the forth quantum number assigned to electrons
- In 1925, Samuel Goudsmit and George Uhlenbeck (graduate students!!) in Holland proposed that *the* <u>electron must have an</u> <u>intrinsic angular momentum</u> and therefore a magnetic moment.
- Paul Ehrenfest showed that the surface of the spinning electron should be moving faster than the speed of light to obtain the needed angular momentum!!
- In order to explain experimental data, Goudsmit and Uhlenbeck proposed that the electron must have an **intrinsic spin quantum** number $s = \frac{1}{2}$.


Intrinsic Spin

- The spinning electron reacts similarly to the orbiting electron in a magnetic field. (Dirac showed that this is necessary due to special relativity.)
- We should try to find L, L_z , ℓ , and m_{ℓ} .
- The magnetic spin quantum number m_s has only two values, $m_s = \pm \frac{1}{2}$.

The electron's spin will be either "up" or "down" and can never be spinning with its magnetic moment μ_s exactly along the z ax For each state of the other quantum numbers, there are two spin values

The intrinsic spin angular momentum


vector
$$|\vec{S}| = \sqrt{s(s+1)}\hbar = \sqrt{3/4}\hbar$$

(a)

Energy Levels and Electron Probabilities

• For hydrogen, the energy level depends on the principle quantum number *n*.

In ground state an atom cannot emit radiation. It can absorb electromagnetic radiation, or gain energy through inelastic bombardment by particles.

Selection Rules

 We can use the wave functions to calculate transition probabilities for the electron to change from one state to another.

Allowed transitions: Electrons absorbing or emitting photons can change states when $\Delta \ell = \pm 1$. (Evidence for the photon carrying one unit of angular momentum!)

$$\Delta n$$
=anything $\Delta \ell = \pm 1$ $\Delta m_{\ell} = 0, \pm 1$

Forbidden transitions: Other transitions possible but occur with much smaller probabilities when $\Delta \ell \neq \pm 1$.