PHYS 1443 – Section 003 Lecture #2

Monday, Jan. 25, 2021 Dr. **Jae**hoon **Yu**

- How to study for this course?
- Brief history of physics
- Standards and units
- Estimates

Today's homework is homework #2, due 11pm, Tuesday, Feb. 2!!

Announcements

- Homework registration
 - 85/96 registered! Impressive! 71/85 completed the submission!
 - The deadline and the freebee homework are 11pm tonight!!
 - You need my approval to enroll and need to move quickly otherwise you will not have enough time to get the freebee HW!! Remember all HW carry the same weight!
- Quiz at the beginning of the class this Wed., Jan. 27
 - Appendix A1 A9 and what we've learned today (CH1 3 or 4?)!
 - BYOF: You may bring a one 8.5x11.5 sheet (front and back) of <u>handwritten</u> formulae and values of constants for the exam
 - No derivations, word definitions, setups or solutions of any problems, figures, pictures, diagrams or arrows, etc!
 - No additional formulae or values of constants will be provided!
 - Must email me the photos of front and back of the formula sheet, including the blank at jaehoonyu@uta.edu no later than <u>12:00pm the day of the test</u>
 - The subject of the email should be the same as your file name
 - File name must be FS-Q1-LastName-FirstName-SP21.pdf
 - Once submitted, you cannot change, unless I ask you to delete part of the sheet!

Basic Rules for Online Exams

- All quizzes and exams will be online on Quest, the same system as your online homework
- Academic integrity is very important to keep the system the fairest to all
 - We all have to work together to maintain the integrity!
- Leave the camera ON showing you and UNMUTE the mic at all times
- If you have questions, type into the zoom chat window to me
- POWER OFF your phone, iPADs and any other computing devices except for the computer you take exam with
- Quit all other applications and web pages, except zoom and the Quest
- Have your calculator, formula sheet and clean scrap sheets out
- Strongly suggest to write down the answers before entering
- Send me the photos of the front and back of your formula sheet no later than 2.5 hours prior to the exam (E)/quizzes (Q)
 - File name must be FS-Q1-LastName-FirstName-SP21.pdf

Special Project #1 for Extra Credit

- Find the solutions for $yx^2-zx+v=0 \rightarrow 5$ points
 - x is the unknown variable, and y, z and v are constant coefficients!
 - You cannot just plug into the quadratic equations!
 - You must show a complete algebraic process of obtaining the solutions!
- Derive the kinematic equation $v^2 = v_0^2 + 2a(x x_0)$ from first principles and the known kinematic equations \rightarrow 10 points
- You must show your OWN work in detail to obtain the full credit
 - Must be <u>handwritten</u> and in much more detail than in this lecture note!!!
 - Please do not copy from the lecture note or from your friends. You will all get 0!!
 - BE SURE to show all the details of your own work, including all formulae, proper references to them and explanations
- Due at the beginning of the class 1:00pm Monday, Feb. 1 on Canvas
 - File name must be: SP1-LastName-FirstName-SP21.pdf

What do we want to learn in this class?

- Physics is everywhere around you.
- Skills to understand the fundamental principles that surrounds you in everyday lives...
- Skills to identify what laws of physics applies to what phenomena and use them appropriately
- Understand the impact of physical laws and apply them
- Learn skills to think, research and analyze observations.
- Learn skills to express observations and measurements in mathematical language
- Learn skills to express your research in a systematic manner in writing
- But most importantly building up the confidence in your physics ability and to take on any challenges laid in front of you!!

Even more importantly, let us have a lot of FUN!!

Specifically, in this course, you will learn...

- Fundamentals and concepts of mechanics
 - Vector and scalar quantities
- Concepts of physical quantities that describe motions, such as velocity, speed, acceleration, etc
- Use of kinematic equations to describe motions
- Concepts of force, energy and momentum and their conservation laws
- Techniques to use conservation laws for motions
- Rotational motions and Equilibrium conditions
- Fluid and wave motions and thermodynamics
- Focus on relevance of these concepts for everyday lives

How to study for this course?

- Keep up with the class for comprehensive understanding of materials
 - Come to the class and actively participate in the discussions and problems solving sessions
 - Follow through lecture notes, keeping in mind these notes alone are insufficient
 - Work out example problems in the book yourself without looking at the solution
 - Have many tons of fun in the class, asking lots of questions!!!!!
- Keep up with the homework to put the last nail on the crate
 - One can always input the answers as you solve problems. Do NOT wait till you are done with all the problems.
 - Form a study group and discuss how to solve problems with your friends, then work the problems out yourselves!
- Prepare for upcoming classes
 - Read the textbook for the material to be covered in the next class
- The extra mile
 - Work out additional problems in the back of the book starting the easiest problems to harder ones

Why do Physics?

- Exp. To understand nature through experimental observations and measurements (Research)
 - Establish limited number of fundamental laws, usually with mathematical expressions
 Predict the nature's course
- Theory **1**
 - \Rightarrow Theory and Experiment work hand-in-hand
 - \Rightarrow Theory works generally under restricted conditions
 - \Rightarrow Discrepancies between experimental measurements and theory are good for improvements
 - \Rightarrow To improve our everyday lives, even though some laws can take a while till we see them amongst us

Brief History of Physics

- AD 18th century:
 - Newton's Classical Mechanics: A theory of mechanics based on observations and measurements
- AD 19th Century:
 - Electricity, Magnetism, and Thermodynamics
- Late AD 19th and early 20th century (Modern Physics Era)
 - Einstein's theory of relativity: Generalized theory of space, time, and energy (mechanics)
 - Quantum Mechanics: Theory of atomic phenomena
- Physics has come very far, very fast, and is still progressing, yet we've got a long way to go
 - What is matter made of?
 - How do matters get mass?
 - How and why do matters interact with each other?
 - How is universe created?

Terminologies: Models, Theories and Laws

- Models: An analogy or a mental image of a phenomena in terms of something we are familiar with
 - Thinking light as waves, behaving just like water waves
 - Often provide insights for new experiments and ideas
- Theories: More systematically improved version of models
 - Can provide quantitative predictions that are testable and more precise
- Laws: Certain concise but general statements about how nature behaves
 - Energy conservation
 - The statement must be found experimentally valid to become a law
- Principles: Less general statements of how nature behaves
 - Has some level of arbitrariness

Needs for Standards and Units – I

- Physics is based on precise measurements and comparisons
- A rule for how things are measured and compared is essential
- Need experiments to establish the units of such measurements
- Precise measurement is necessary for practical uses and for fully understanding the rules of nature
- Units define a unique name assigned to the measure of the given quantity
 - Consistency is crucial for physical measurements and comparisons
 - The same quantity measured by one must be comprehendible and reproducible by others
 - Practical matters contribute

Needs for Standards and Units – II

- Seven fundamental quantities for physical measurements
 - Length, Mass, Time, Electric Current, Temperature, the Amount of substance and the Luminous intensity
 - All other physical quantities can be derived from these
- A system of unit called <u>SI</u> (*System Internationale*) was established in 1971
- The three base quantities relevant for this course are
 - <u>Length</u> in meters (m)
 - <u>Mass</u> in kilo-grams (kg)
 - <u>Time</u> in seconds (s)
- These scales are called the human scales

Definition of Three Relevant Base Units

SI Units	Definitions
1 m (Length) = 100 cm	One meter is the length of the path traveled by light in vacuum during the time interval of <u>1/299,792,458</u> of a second.
1 kg (Mass) = 1000 g	It is equal to the mass of the international prototype of the kilogram, made of platinum-iridium in International Bureau of Weights and Measure in France.
1 <i>s (Time)</i>	One second is the <u>duration of 9,192,631,770 periods</u> <u>of the radiation</u> corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 (C ¹³³) atom.

•There are total of seven base quantities (see Appendix A)

•There are prefixes that scales the units larger or smaller for convenience (see T.1-2 pg. 2) •Units for other quantities, such as Newtons for force and Joule for energy, for ease of use

International Standard Institutes

- International Bureau of Weights and Measure
 <u>http://www.bipm.fr/</u>
 - Base unit definitions: <u>http://www.bipm.fr/enus/3_SI/base_units.html</u>
 - Unit Conversions: <u>http://www.bipm.fr/enus/3_SI/</u>
- US National Institute of Standards and Technology (NIST) <u>http://www.nist.gov/</u>

SI Base Quantities and Units

Quantity	Unit	Unit Abbrevation
Length	Meter	m
Time	Second	S
Mass	Kilogram	kg
Electric current	Ampere	A
Temperature	Kelvin	K
Amount of substance	Mole	mol
Luminous Intensity	Candela	cd

•There are prefixes that scales the units larger or smaller for convenience (see pg. 9)

•These simplifies the expression of numbers: 20,000,000,000 bytes →20GB

•Pick all the base units! (Poll 3)

Prefixes, expressions and their meanings Larger Smaller

- deca (da): 10¹
- hecto (h): 10²
- kilo (k): 10³
- mega (M): 10⁶
- giga (G): 10⁹
- tera (T): 10¹²
- peta (P): 10¹⁵
- exa (E): 10¹⁸
- zetta (Z): 10²¹
- yotta (Y): 10²⁴

Monday, Jan. 25, 2021

PHYS 1443-003, Spring 2021 Dr. Jaehoon Yu

• deci (d): 10⁻¹

- centi (c): 10⁻²
- milli (m): 10⁻³
- micro (µ): 10⁻⁶
- nano (n): 10⁻⁹
- pico (p): 10⁻¹²
- femto (f): 10⁻¹⁵
- atto (a): 10⁻¹⁸
- zepto (z): 10⁻²¹
- yocto (y): 10⁻²⁴

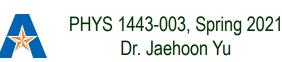
How do we convert quantities from one unit to another?

Unit 1 = Conversion factor X Unit 2

1 inch	2.54	cm
1 inch	0.0254	m
1 inch	2.54x10 ⁻⁵	km
1 ft	30.3	cm
1 ft	0.303	m
1 ft	3.03x10 ⁻⁴	km
1 hr	60	minutes
1 hr	3600	seconds
And many	More	Here

Examples for Unit Conversions

Ex: An apartment has a floor • area of 880 square feet (ft^2). Express this in square meters (m^2) .


What do we need to know?

880 ft² = 880 ft² × $\left(\frac{12jh}{1ft}\right)^{2} \left(\frac{0.0254 \text{ m}}{1 \text{ if}}\right)^{2}$ $= 880 \text{ ft}^2 \times \left(\frac{0.0929 \text{ m}^2}{1 \text{ ft}^2} \right)$ $= 880 \times 0.0929 \text{ m}^2 \approx 82 \text{m}^2$

18

Ex: Where the posted speed limit is 55 miles per hour (mi/h or mph), what is this speed (a) in meters per second (m/s) and (b) kilometers per hour (km/h)? $1 \text{ mi} = (5280 \text{ ft}) \left(\frac{12 \text{ in}}{1 \text{ ft}}\right) \left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right) \left(\frac{1 \text{ m}}{100 \text{ cm}}\right) = 1609 \text{ m} = 1.609 \text{ km}$ (a) 55 mi/h = $(55 \text{ mi}) \left(\frac{1609 \text{ m}}{1 \text{ mi}}\right) \left(\frac{1}{1 \text{ h}}\right) \left(\frac{1 \text{ h}}{3600 \text{ s}}\right) = 25 \text{ m/s}$ **(b)** 55 mi/h = $(55 \text{ mi}) \left(\frac{1.609 \text{ km}}{1 \text{ mi}}\right) \left(\frac{1}{1 \text{ h}}\right) = 88 \text{ km/hr}$

Dr. Jaehoon Yu

Uncertainties

- Physical measurements have limited precision, however good they are, due to:
- Stat.{ Number of measurements (Normally scales by $1/\sqrt{N}$)
- Quality of the instruments (meter stick vs micro-meter)
 Syst. Experience of the person doing measurements
 Etc
 - In many cases, uncertainties are more important and difficult to estimate than the central (or mean) values

Significant Figures – I

- Denote the precision of the measured values
 - The number 80 implies precision of +/- 1, between 79 and 81
 - If you are sure to +/-0.1, the number should be written 80.0
 - Significant figures: non-zero numbers or zeros that are not placeholders (Rapid poll 4)
 - 34, 34.2, 0.001, 34.100
 - 34 has two significant digits
 - 34.2 has 3
 - 0.001 has one because the 0's before 1 are place holders to position "."
 - 34.100 has 5, because the 0's after 1 indicates that the numbers in these digits are indeed 0's.
 - When there are many 0's, use scientific notation for simplicity:
 - $31400000=3.14\times10^{7}$
 - $0.00012 = 1.2 \times 10^{-4}$
 - How about 3000?

- This book assumes all 0's are significant but it could be different in other cases!

Monday, Jan. 25, 2021

PHYS 1443-003, Spring 2021 Dr. Jaehoon Yu

Significant Figures – II

- Operational rules:
 - Addition or subtraction: Keep the <u>smallest number of</u> <u>decimal place</u> in the result, independent of the number of significant digits: 12.001+ 3.1= 15.1
 - Multiplication or Division: Keep the <u>smallest number of</u> <u>significant digits</u> in the result: $12.001 \times 3.1 = 37$, because the smallest significant figures is ?.

What does this mean?

In English?

The worst precision determines the precision the overall operation!! Can't get any better than the worst measurement!

