PHYS 1443 – Section 001 Lecture #2

Wednesday, May 31, 2006 Dr. Jaehoon Yu

- Brief history of physics
- Standards and units
- Dimensional Analysis
- Fundamentals
- One Dimensional Motion: Average Velocity; Acceleration; Motion under constant acceleration; Free Fall
- Motion in Two Dimensions: Vector Properties and Operations; Motion under constant acceleration; Projectile Motion

Announcements

- Reading assignment #1: Read and follow through all sections in appendices A and B by Thursday, June 1
- There will be a quiz on tomorrow, Thursday, June 1, on this reading assignment.

Brief History of Physics

- AD 18th century:
 - Newton's Classical Mechanics: A theory of mechanics based on observations and measurements
- AD 19th Century:
 - Electricity, Magnetism, and Thermodynamics
- Late AD 19th and early 20th century (Modern Physics Era)
 - Einstein's theory of relativity: Generalized theory of space, time, and energy (mechanics)
 - Quantum Mechanics: Theory of atomic phenomena
- Physics has come very far, very fast, and is still progressing, yet we've got a long way to go
 - What is matter made of?
 - How do matters get mass?
 - How and why do matters interact with each other?
 - How is universe created?

Needs for Standards and Units

- Three basic quantities for physical measurements
 - Length, Mass, and Time
- Need a language that everyone can understand each other
 - Consistency is crucial for physical measurements
 - The same quantity measured by one must be comprehendible and reproducible by others
 - Practical matters contribute
- A system of unit called <u>SI</u> (*System International*) was established in 1960
 - Length in meters (m)
 - Mass in kilo-grams (kg)
 - Time in seconds (s)

Definition of Base Units

SI Units	Definitions
1 m (Length) = 100 cm	One meter is the length of the path traveled by light in vacuum during a time interval of <u>1/299,792,458 of</u> <u>a second</u> .
1 kg (Mass) = 1000 g	It is equal to the mass of the international prototype of the kilogram, made of platinum-iridium in International Bureau of Weights and Measure in France.
1 <i>s (Time)</i>	One second is the <u>duration of 9,192,631,770</u> <u>periods of the radiation</u> corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 (C ¹³³) atom.

There are prefixes that scales the units larger or smaller for convenience (see pg. 7)
Units for other quantities, such as Kelvins for temperature, for easiness of use

Prefixes, expressions and their meanings

- deca (da): 10¹
- hecto (h): 10²
- kilo (k): 10³
- mega (M): 10⁶
- giga (G): 10⁹
- tera (T): 10¹²
- peta (P): 10¹⁵
- exa (E): 10¹⁸

- deci (d): 10⁻¹
- centi (c): 10⁻²
- milli (m): 10⁻³
- micro (μ): 10⁻⁶
- nano (n): 10⁻⁹
- pico (p): 10⁻¹²
- femto (f): 10⁻¹⁵
- atto (a): 10⁻¹⁸

International Standard Institutes

- International Bureau of Weights and Measure <u>http://www.bipm.fr/</u>
 - Base unit definitions: <u>http://www.bipm.fr/enus/3_SI/base_units.html</u>
 - Unit Conversions: <u>http://www.bipm.fr/enus/3_SI/</u>
- US National Institute of Standards and Technology (NIST) <u>http://www.nist.gov/</u>

How do we convert quantities from one unit to another?

Unit 1 = Conversion factor X Unit 2

1 inch	2.54	cm
1 inch	0.0254	m
1 inch	2.54x10 ⁻⁵	km
1 ft	30.3	cm
1 ft	0.303	М
1 ft	3.03x10 ⁻⁴	km
1 hr	60	minutes
1 hr	3600	seconds
And many	More	Here

Examples 1.3 and 1.4 for Unit Conversions

• Ex 1.3: A silicon chip has an area of 1.25in². Express this in cm².

What do we need to know?

.25 in² = 1.25 in² ×
$$\left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right)^2$$

= 1.25 in² × $\left(\frac{6.45 \text{ cm}^2}{1 \text{ in}^2}\right)^2$
= 1.25 × 6.45 cm² = 8.06 cm²

9

• Ex 1.4: Where the posted speed limit is 65 miles per hour (mi/h or mph), what is this speed (a) in meters per second (m/s) and (b) kilometers per hour (km/h)? 1 mi= $(5280 \text{ ft})\left(\frac{12 \text{ in}}{1 \text{ ft}}\right)\left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right)\left(\frac{1 \text{ m}}{100 \text{ cm}}\right) = 1609 \text{ m} = 1.609 \text{ km}$ (a) 65 mi/h = (65 mi) $\left(\frac{1609 \text{ m}}{1 \text{ m}}\right)\left(\frac{1}{1 \text{ m}}\right)\left(\frac{1 \text{ h}}{1 \text{ m}}\right) = 29.1 \text{ m/s}$

(a) 65 mi/h = (65 mi)
$$\left(\frac{1 \text{ mi}}{1 \text{ mi}}\right) \left(\frac{1 \text{ h}}{1 \text{ h}}\right) \left(\frac{3600 \text{ s}}{3600 \text{ s}}\right) = 29.1 \text{ m/s}$$

(b) 65 mi/h = (65 mi) $\left(\frac{1.609 \text{ km}}{1 \text{ mi}}\right) \left(\frac{1}{1 \text{ h}}\right) = 104 \text{ km/h}$
Wednesday, May 31,
2006 Dr. Jaehoon Yu

Estimates & Order-of-Magnitude Calculations

- Estimate = Approximation
 - Useful for rough calculations to determine the necessity of higher precision
 - Usually done under certain assumptions
 - Might require modification of assumptions, if higher precision is necessary
- Order of magnitude estimate: Estimates done to the precision of 10s or exponents of 10s;
 - Three orders of magnitude: $10^3 = 1,000$
 - Round up for Order of magnitude estimate; $8x10^7 \sim 10^8$
 - Similar terms: "Ball-park-figures", "guesstimates", etc

Example 1.8

Estimate the radius of the Earth using triangulation as shown in the picture when d=4.4km and h=1.5m.

Uncertainties

- Physical measurements have limited precision, however good they are, due to:
- Stat.{ Number of measurements
- Syst. Quality of instruments (meter stick vs micro-meter)
 Experience of the person doing measurements
 Etc
 - In many cases, uncertainties are more important and difficult to estimate than the central (or mean) values

Significant Figures

- Significant figures denote the precision of the measured values
 - Significant figures: non-zero numbers or zeros that are not place-holders
 - 34 has two significant digits, 34.2 has 3, 0.001 has one because the 0's before 1 are place holders, 34.100 has 5, because the 0's after 1 indicates that the numbers in these digits are indeed 0's.
 - When there are many 0's, use scientific notation:
 - $31400000 = 3.14 \times 10^{7}$
 - $0.00012 = 1.2 \times 10^{-4}$

Significant Figures

- Operational rules:
 - Addition or subtraction: Keep the <u>smallest number of</u> <u>decimal place</u> in the result, independent of the number of significant digits: 12.001+ 3.1= 15.1
 - Multiplication or Division: Keep the <u>smallest</u> <u>significant figures</u> in the result: $12.001 \times 3.1 = 37$, because the smallest significant figures is ?.

Dimension and Dimensional Analysis

- An extremely useful concept in solving physical problems
- Good to write physical laws in mathematical expressions
- No matter what units are used the base quantities are the same
 - *Length* (distance) is length whether meter or inch is used to express the size: Usually denoted as [L]
 - The same is true for *Mass ([M])* and *Time ([T])*
 - One can say "Dimension of Length, Mass or Time"
 - Dimensions are used as algebraic quantities: Can perform two algebraic operations; multiplication or division

Dimension and Dimensional Analysis

- One can use dimensions only to check the validity of one's expression: Dimensional analysis
 - Eg: Speed $[v] = [\mathcal{L}]/[\mathcal{T}] = [\mathcal{L}]/[\mathcal{T}^{-1}]$
 - Distance (L) traveled by a car running at the speed V in time T

 $\bullet \mathcal{L} = \mathcal{V}^{\star}\mathcal{T} = [\mathcal{L}/\mathcal{T}]^{\star}[\mathcal{T}] = [\mathcal{L}]$

More general expression of dimensional analysis is using exponents: eg. [v]=[LⁿT^m] =[L]{T¹] where n = 1 and m = -1

Examples

- Show that the expression [v] = [at] is dimensionally correct
 - Speed: [v] =L/T
 - Acceleration: [a] =L/T²
 - Thus, $[at] = (L/T^2)xT = LT^{(-2+1)} = LT^{-1} = L/T = [v]$

•Suppose the acceleration a of a circularly moving particle with speed v and radius r is proportional to r^n and v^m . What are n and m?

Some Fundamentals

- Kinematics: Description of Motion without understanding the cause of the motion
- Dynamics: Description of motion accompanied with understanding the cause of the motion
- Vector and Scalar quantities:
 - Scalar: Physical quantities that require magnitude but no direction
 - Speed, length, mass, height, volume, area, magnitude of a vector quantity, etc
 - Vector: Physical quantities that require both magnitude and direction
 - Velocity, Acceleration, Force, Momentum
 - It does not make sense to say "I ran with velocity of 10miles/hour."
- Objects can be treated as point-like if their sizes are smaller than the scale in the problem
 - Earth can be treated as a point like object (or a particle)in celestial problems
 - Simplification of the problem (The first step in setting up to solve a problem...)
 - Any other examples?

Some More Fundamentals

- Motions:Can be described as long as the position is known at any time (or position is expressed as a function of time)
 - Translation: Linear motion along a line
 - Rotation: Circular or elliptical motion
 - Vibration: Oscillation
- Dimensions
 - 0 dimension: A point
 - 1 dimension: Linear drag of a point, resulting in a line →
 Motion in one-dimension is a motion on a line
 - 2 dimension: Linear drag of a line resulting in a surface
 - 3 dimension: Perpendicular Linear drag of a surface, resulting in a stereo object

Displacement, Velocity and Speed

One dimensional displacement is defined as:

 $\Delta x \equiv x_f - x_i$

Displacement is the difference between initial and final potions of motion and is a vector quantity. How is this different than distance?

Average velocity is defined as: $v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$

Displacement per unit time in the period throughout the motion Average speed is defined as:

$$v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Time Spent}}$$

Can someone tell me what the difference between speed and velocity is?

Difference between Speed and Velocity

• Let's take a simple one dimensional translation that has many steps:

Let's call this line as X-axis

Example 2.1

The position of a runner as a function of time is plotted as moving along the x axis of a coordinate system. During a 3.00-s time interval, the runner's position changes from $x_1=50.0m$ to $x_2=30.5$ m, as shown in the figure. What was the runner's average velocity? What was the average speed?

Instantaneous Velocity and Speed

- Can average quantities tell you the detailed story of the whole motion?
- Instantaneous velocity is defined as:
 - What does this mean?

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

- Displacement in an infinitesimal time interval
- Mathematically: Slope of the position variation as a function of time
- •Instantaneous speed is the size (magnitude) of the velocity vector: $\Delta x = |dx|$ *Magnitude of Ve

$$|v_x| = \left| \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \right| = \left| \frac{dx}{dt} \right|$$

*Magnitude of Vectors are expressed in absolute values

Position vs Time Plot

Instantaneous Velocity

Dr. Jaehoon Yu

2006

Example 2.3

A jet engine moves along a track. Its position as a function of time is given by the equation $\chi = At^2 + B$ where A=2.10m/s² and B=2.80m.

(a) Determine the displacement of the engine during the interval from $t_1=3.00s$ to $t_2=5.00s$. $x_1 = x_{t_1=3.00} = 2.10 \times (3.00)^2 + 2.80 = 21.7m$ $x_2 = x_{t_2=5.00} = 2.10 \times (5.00)^2 + 2.80 = 55.3m$

Displacement is, therefore:

$$\Delta x = x_2 - x_1 = 55.3 - 21.7 = +33.6(m)$$

(b) Determine the average velocity during this time interval.

$$\overline{v}_x = \frac{\Delta x}{\Delta t} = \frac{33.6}{5.00 - 3.00} = \frac{33.6}{2.00} = 16.8 (m/s)$$

Example 2.3 cont'd

(c) Determine the instantaneous velocity at $t=t^2=5.00s$.

Calculus formula for derivative

$$\frac{d}{dt}(Ct^n) = nCt^{n-1}$$
 and $\frac{d}{dt}(C) = 0$

The derivative of the engine's equation of motion is

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} = \frac{d}{dt} \left(At^2 + B \right) = 2At$$

The instantaneous velocity at t=5.00s is

$$v_x(t=5.00s) = 2A \times 5.00 = 2.10 \times 10.0 = 21.0(m/s)$$

Displacement, Velocity and Speed

Displacement

Average velocity

Average speed

$$\Delta x \equiv x_f - x_i$$

$$v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$$

$$v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Time Spent}}$$

dx

dt

Instantaneous velocity

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

$$|v_x| = \left|\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}\right| =$$

Instantaneous speed

