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PHYS 1443 – Section 001
Lecture #4

Monday, June 5, 2006
Dr. Jaehoon Yu

• Motion in Two Dimensions
– Motion under constant acceleration
– Projectile Motion
– Maximum ranges and heights

• Reference Frames and relative motion
• Newton’s Laws of Motion 

– Force
– Newton’s Law of Inertia & Mass
– Newton’s second law of motion
– Newton’s third law of motion
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Announcements
• All of you have registered for the homework

– Good job!!!
• Quiz result

– Class average: 10.5/14
• Equivalent to: 75/100

– Top score: 14/14
• Mail distribution list

– Problem has been fixed. Please go ahead and subscribe to the list
• Phys1443-001-summer06

– Extra credit
• 5 points if done by Tomorrow, June 6
• 3 points if done by Thursday, June 8
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Unit Vectors
• Unit vectors are the ones that tells us the 

directions of the components
• Dimensionless
• Magnitudes are exactly 1
• Unit vectors are usually expressed in i, j, k or

,  j, ki

A =So the vector AA can 
be re-written as  yA cos    A θ= + sinA θ xA + ii j j
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Displacement, Velocity, and Acceleration in 2-dim

• Displacement: r∆ =

• Average Velocity: v ≡

• Instantaneous 
Velocity:

v ≡

• Average 
Acceleration a ≡

• Instantaneous 
Acceleration: a ≡

How is each of 
these quantities 
defined in 1-D?
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Kinematic Quantities in 1d and 2d

Inst. Acc.

Average Acc.

Inst. Velocity

Average Velocity

Displacement

2 Dimension1 DimensionQuantities
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What is the difference between 1D and 2D quantities?

f ix x− f ir r−
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2-dim Motion Under Constant Acceleration
• Position vectors in x-y plane:

ir = fr =

• Velocity vectors in x-y plane:

iv = fv =

xfv =

fv =

yfv =

Velocity vectors in terms of acceleration vector

i ix i y j+ f fx i y j+

xi yiv i v j+ xf yfv i v j+

xi xv a t+ yi yv a t+

( ) ( )xi x yi yv a t i v a t j+ + + =

iv at= +

X-comp Y-comp

( ) ( )xi yi x yv i v j a i a j t+ + + =
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2-dim Motion Under Constant Acceleration
• How are the position vectors written in acceleration 

vectors?
Position vector 
components

Putting them 
together in a 
vector form

Regrouping 
the above

fr =

fx = fy =

( )i ix i y j= +

21
2i xi xx v t a t+ + 21

2i yi yy v t a t+ +

fx i fy j+ =

21
2i xi xx v t a t i⎛ ⎞= + +⎜ ⎟

⎝ ⎠
21

2i yi yy v t a t j⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

( )xi yiv i v j t+ + ( ) 21
2 x ya i a j t+ +

ir= iv t+ 21
2

at+
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Example for 2-D Kinematic Equations
A particle starts at origin when t=0 with an initial velocity  vv=(20ii-15jj)m/s.  
The particle moves in the xy plane with ax=4.0m/s2. Determine the 
components of velocity vector at any time, t.

xfv

Compute the velocity and speed of the particle at t=5.0 s.

5tv =

( ) ( )22
x yspeed v v v= = +

( )v t

yfvxiv= xa t+ 20= ( )4.0 /t m s+ yiv= ya t+ 15= − 0t+ ( )15 /m s= −

Velocity vector ( )xv t i= ( )yv t j+ ( )20 4.0t i= + 15 ( / )j m s−

, 5x tv i== , 5y tv j=+ ( )20 4.0 5.0 i= + × 15 j− ( )40 15  /i j m s= −

( ) ( )2 240 15 43 /m s= + − =
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Example for 2-D Kinematic Eq. Cnt’d
θ =

Determine the x and y components of the particle at t=5.0 s.

fx =

fr =

fy =

Can you write down the position vector at t=5.0s?

Angle of the 
Velocity vector

1tan y

x

v
v

− ⎛ ⎞
=⎜ ⎟

⎝ ⎠
1 15tan

40
− −⎛ ⎞ =⎜ ⎟
⎝ ⎠

1 3tan 21
8

− −⎛ ⎞ = −⎜ ⎟
⎝ ⎠

xiv t 21
2 xa t+ 20 5= × 21 4 5

2
+ × × = 150( )m

yiv t = 15 5− × = 75 ( )m−

fx i fy j+ 150i= ( )75 j m−
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Projectile Motion
• A 2-dim motion of an object under 

the gravitational acceleration with 
the following assumptions
– Free fall acceleration, -g, is constant 

over the range of the motion
– Air resistance and other effects are 

negligible
• A motion under constant 

acceleration!!!! Superposition 
of two motions
– Horizontal motion with constant 

velocity ( no acceleration )
– Vertical motion under constant 

acceleration ( g )
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a =

ii

f

v
x

t
θcos

=

Show that a projectile motion is a parabola!!!

ιθcosixi vv =

=fx

( ) 21
2f yiy v t g t= + −

fy =Plug t into 
the above

In a projectile motion, 
the only acceleration is 
gravitational one whose 
direction is always 
toward the center of the 
earth (downward).ax=0

What kind of parabola is this?2
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Projectile Motion 

The only acceleration in this 
motion.  It is a constant!!
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Example for Projectile Motion
A ball is thrown with an initial velocity  vv=(20ii+40jj)m/s.  Estimate the time of 
flight and the distance the ball is from the original position when landed.

Which component determines the flight time and the distance?

fy =

fx =

Flight time is determined 
by y component, because 
the ball stops moving 
when it is on the ground 
after the flight.

Distance is determined by x
component in 2-dim, because 
the ball is at y=0 position 
when it completed it’s flight.

sec880or  0 ≈==∴
g

tt

( )80 0t gt− =

( ) 2140
2

t g t+ − =0m

8sect∴ ≈

xiv t = ( )20 8 160 m× =

So the possible solutions are…

Why isn’t 0 
the solution?
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Horizontal Range and Max Height
• Based on what we have learned in the previous pages, one 

can analyze a projectile motion in more detail
– Maximum height an object can reach
– Maximum range

yfv =

At the maximum height the object’s vertical 
motion stops to turn around!!

vvii

θ
h

g
vt i

A
ιθsin

=∴

What happens at the maximum height?

yi yv a t+

sini Av gtιθ= − = 0

Solve for tA
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Horizontal Range and Max Height

fy =

Since no acceleration is in x direction, it still flies even if vy=0.

R =
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Maximum Range and Height
• What are the conditions that give maximum height and 

range of a projectile motion?

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

g
vh ii

2
sin 22 θ This formula tells us that 

the maximum height can be 
achieved when θi=90o!!!

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

g
vR ii θ2sin2

This formula tells us that 
the maximum range can be 
achieved when 2θi=90o, 
i.e., θi=45o!!!
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Example for a Projectile Motion
• A stone was thrown upward from the top of a cliff at an angle of 37o

to horizontal with initial speed of 65.0m/s.  If the height of the cliff is 
125.0m, how long is it before the stone hits the ground? 

xiv

fy =

2 78.2 250gt t− − =

( )
80.92

)250(80.942.782.78 2

×
−××−−±

=t

stst 4.10or    43.2 =−=

st 4.10=

yiv

Since negative time does not exist.

cosiv ιθ= 65.0 cos37 51.9 /m s= × =

sini iv θ= 65.0 sin 37 39.1 /m s= × =

125.0− = 21
2yiv t gt−

29.80 78.2 250 0t t− − =

Becomes
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Example cont’d
• What is the speed of the stone just before it hits the ground? 

yfv =

v =

== xixf vv

• What are the maximum height and the maximum range of the stone? 

Do these yourselves at home for fun!!!

sini iv gtθ − =

cosiv ιθ =

yiv gt− =

2 2
xf yfv v+ = ( )2251.9 62.8 81.5 /m s+ − =

39.1 9.80 10.4 62.8 /m s− × = −

65.0 cos 37 51.9 /m s× =
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Observations in Different Reference Frames
Results of Physical measurements in different reference frames could 
be different
Observations of the same motion in a stationary frame would  be different 
than the ones made in the frame moving together with the moving object.

Consider that you are driving a car.   To you, the objects in the car do not 
move while to the person outside the car they are moving in the same 
speed and direction as your car is.

O

Frame S

r’

O’

Frame S’
The position vector  r’ is still  r’ in the moving 
frame S’.no matter how much time has passed!!v0
The position vector  r is no longer r in the 
stationary frame S when time t has passed.

0 0( )r t r v t= +
v0t

r
How are these position 
vectors related to each other?
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Relative Velocity and Acceleration
The velocity and acceleration in two different frames of references 
can be denoted, using the formula in the previous slide:

O

Frame S

r’

O’

Frame S’v0

v0t

r

r ′ =
Galilean 
transformation 
equation 

What does this tell you?

The accelerations measured in two frames are the 
same when the frames move at a constant velocity 
with respect to each other!!!

The earth’s gravitational acceleration is the same in 
a frame moving at a constant velocity wrt the earth.

d r
d t
′
=

v ′ =

d v
d t
′
=

0,  when  is constanta a v′ =

0
d r v
d t

−

0v v−

0d v d v
d t d t

−

0r v t−


