PHYS 1443 – Section 001 Lecture #9

Tuesday, June 13, 2006 Dr. Jaehoon Yu

- Potential Energy
 - Elastic Potential Energy
- Conservative and non-conservative forces
- Potential Energy and Conservative Force
- Conservation of Mechanical Energy
- Work Done by Non-conservative Forces
- Energy Diagram and Equilibrium
- Gravitational Potential Energy
 - Escape Speed
- Power

Today's homework is HW #5, due 7pm, Monday, June 19!!

Announcements

- New Quiz result
 - New Average: 4.6/8
 - 57.5/100
 - Top score: 8/8
- Mid-term exam
 - 8:00 10am, this Thursday, June 15, in class
 - CH 1 8
 - No class tomorrow

Potential Energy

Energy associated with a system of objects > Stored energy which has the potential or the possibility to work or to convert to kinetic energy

What does this mean?

In order to describe potential energy, U, a system must be defined.

The concept of potential energy can only be used under the special class of forces called, conservative forces which results in principle of conservation of mechanical energy.

$$E_{M} \equiv KE_{i} + PE_{i} = KE_{f} + PE_{f}$$

What are other forms of energies in the universe?

Mechanical Energy Chemical Energy

Biological Energy

Electromagnetic Energy

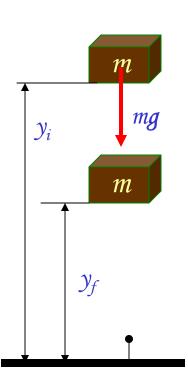
Nuclear Energy

These different types of energies are stored in the universe in many different forms!!!

If one takes into account ALL forms of energy, the total energy in the entire universe is conserved. It just transforms from one form to the other.

Gravitational Potential Energy

Potential energy given to an object by gravitational field in the system of Earth due to its height from the surface



When an object is falling, gravitational force, Mg, performs work on the object, increasing its kinetic energy. The potential energy of an object at a height y which is the potential to work is expressed as

$$U_g = \vec{F}_g \cdot \vec{y} = |\vec{F}_g| |\vec{y}| \cos \theta = |\vec{F}_g| |\vec{y}| = mgy \qquad U_g = mgy$$

Work performed on the object by the gravitational force as the brick goes from y_i to y_f is:

$$W_g = U_i - U_f$$

$$= mgy_i - mgy_f = -\Delta U_g$$

What does this mean?

Work by the gravitational force as the brick goes from y_i to y_f is negative of the change in the system's potential energy

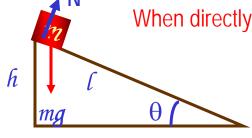
→ Potential energy was lost in order for gravitational force to increase the brick's kinetic energy.

Tuesday, June 13, 2006

Conservative and Non-conservative Forces

The work done on an object by the gravitational force does not depend on the object's path.

When directly falls, the work done on the object by the gravitation force is $\,W_{g}\,=\,mgh\,$



When sliding down the hill of length ℓ , the work is

$$W_{g} = F_{g-incline} \times l = mg \sin \theta \times l$$
$$= mg (l \sin \theta) = mgh$$

How about if we lengthen the incline by a factor of 2, keeping the height the same??

Still the same amount of work

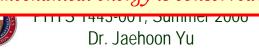
$$W_g = mgh$$

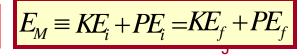
So the work done by the gravitational force on an object is independent on the path of the object's movements. It only depends on the difference of the object's initial and final position in the direction of the force.

The forces like gravitational or elastic forces are called conservative forces

- 1. If the work performed by the force does not depend on the path.
- 2. If the work performed on a closed path is 0.

Total mechanical energy is conserved!!





Conservative Forces and Potential Energy

The work done on an object by a conservative force is $W_c = \int_{x_c}^{x_f} F_x dx = -\Delta U$ equal to the decrease in the potential energy of the system

What else does this statement tell you?

The work done by a conservative force is equal to the negative change of the potential energy associated with that force.

Only the changes in potential energy of a system is physically meaningful!!

We can rewrite the above equation in terms of potential energy U

$$\Delta U = U_f - U_i = -\int_{x_i}^{x_f} F_x dx$$

So the potential energy associated with a conservative force at any given position becomes

$$U_f(x) = -\int_{x_i}^{x_f} F_x dx + U_i$$
 Potential energy function

What can you tell from the potential energy function above? Since U_i is a constant, it only shifts the resulting $U_f(x)$ by a constant amount. One can always change the initial potential so that U_i can be 0.

Example for Potential Energy

A bowler drops bowling ball of mass 7kg on his toe. Choosing floor level as y=0, estimate the total work done on the ball by the gravitational force as the ball falls.

Let's assume the top of the toe is 0.03m from the floor and the hand was 0.5m above the floor.

$$U_i = mgy_i = 7 \times 9.8 \times 0.5 = 34.3J$$
 $U_f = mgy_f = 7 \times 9.8 \times 0.03 = 2.06J$ $W_g = -\Delta U = -(U_f - U_i) = 32.24J \approx 30J$

b) Perform the same calculation using the top of the bowler's head as the origin.

What has to change?

First we must re-compute the positions of ball at the hand and on the toe.

Assuming the bowler's height is 1.8m, the ball's original position is –1.3m, and the toe is at –1.77m.

$$U_{i} = mgy_{i} = 7 \times 9.8 \times (-1.3) = -89.2J \quad U_{f} = mgy_{f} = 7 \times 9.8 \times (-1.77) = -121.4J$$

$$W_{g} = -\Delta U = -\left(U_{f} - U_{i}\right) = 32.2J \cong 30J$$

Elastic Potential Energy

Potential energy given to an object by a spring or an object with elasticity in the system consists of the object and the spring without friction.

The force spring exerts on an object when it is distorted from its equilibrium by a distance x is

$$F_s = -kx$$
 Hooke's Law

The work performed on the object by the spring is

$$W_{s} = \int_{x_{i}}^{x_{f}} (-kx) dx = \left[-\frac{1}{2} kx^{2} \right]_{x_{i}}^{x_{f}} = -\frac{1}{2} kx_{f}^{2} + \frac{1}{2} kx_{i}^{2} = \frac{1}{2} kx_{i}^{2} - \frac{1}{2} kx_{f}^{2}$$

The potential energy of this system is

$$U_s \equiv \frac{1}{2}kx^2$$

What do you see from the above equations?

The work done on the object by the spring depends only on the initial and final position of the distorted spring.

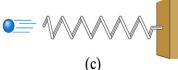
Where else did you see this trend?

The gravitational potential energy, \mathcal{U}_{a}

So what does this tell you about the elastic force?

A conservative force!!!

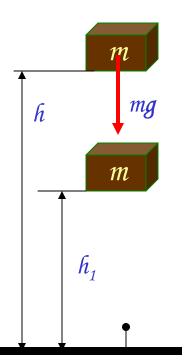
PHYS 1443-001, Summer 2006 Dr. Jaehoon Yu



Conservation of Mechanical Energy

Total mechanical energy is the sum of kinetic and potential energies $\parallel E \equiv K + U$

$$E \equiv K + U$$



Let's consider a brick of mass m at a height h from the ground

What is its potential energy?

$$U_g = mgh$$

What happens to the energy as the brick falls to the ground?

$$\Delta U = U_f - U_i = -\int_{x_i}^{x_f} F_x dx$$

The brick gains speed

By how much?

$$v = gt$$

So what? The brick's kinetic energy increased

$$K = \frac{1}{2}mv^2 = \frac{1}{2}mg^2t^2$$

And?

The lost potential energy is converted to kinetic energy!!

What does this mean? The total mechanical energy of a system remains constant in any isolated system of objects that interacts only through conservative forces:

Principle of mechanical energy conservation Tuesday, June 13, 2006

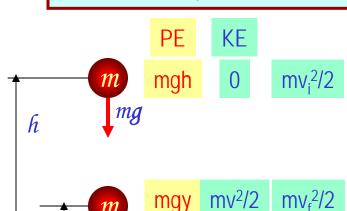
Dr. Jaehoon Yu

$$E_i = E_f$$

$$K_i + \sum U_i = K_f + \sum U_f$$

Example

A ball of mass m is dropped from a height h above the ground. a) Neglecting air resistance determine the speed of the ball when it is at a height y above the ground.



Using the principle of mechanical energy conservation

$$K_{i}+U_{i}=K_{f}+U_{f} \quad 0+mgh = \frac{1}{2}mv^{2}+mgy$$

$$\frac{1}{2}mv^{2} = mg(h-y)$$

$$\therefore v = \sqrt{2g(h-y)}$$

b) Determine the speed of the ball at y if it had initial speed v_i at the time of release at the original height h.

Again using the principle of mechanical energy conservation but with non-zero initial kinetic energy!!!

This result look very similar to a kinematic expression, doesn't it? Which one is it?

$$K_i + U_i = K_f + U_f$$

$$\frac{1}{2}mv_i^2 + mgh = \frac{1}{2}mv_f^2 + mgy$$

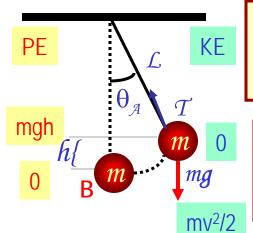
$$\frac{1}{2}m(v_f^2 - v_i^2) = mg(h - y)$$

$$\therefore v_f = \sqrt{v_i^2 + 2g(h - y)}$$

2006

Example

A ball of mass m is attached to a light cord of length L, making up a pendulum. The ball is released from rest when the cord makes an angle θ_A with the vertical, and the pivoting point P is frictionless. Find the speed of the ball when it is at the lowest point, B.



Compute the potential energy at the maximum height, \hbar . Remember where the 0 is.

$$h = L - L\cos\theta_A = L(1 - \cos\theta_A)$$
$$U_i = mgh = mgL(1 - \cos\theta_A)$$

Using the principle of mechanical energy conservation

$$K_i + U_i = K_f + U_f$$

$$0 + mgh = mgL \left(1 - \cos \theta_A\right) = \frac{1}{2}mv^2$$

$$v^{2} = 2gL(1 - \cos\theta_{A}) \quad \therefore v = \sqrt{2gL(1 - \cos\theta_{A})}$$

b) Determine tension T at the point B.

Using Newton's 2nd law of motion and recalling the centripetal acceleration of a circular motion

$$\sum F_r = T - mg = ma_r = m\frac{v^2}{r} = m\frac{v^2}{L}$$

$$T = mg + m\frac{v^2}{L} = m\left(g + \frac{v^2}{L}\right) = m\left(g + \frac{2gL(1 - \cos\theta_A)}{L}\right)$$

Cross check the result in a simple situation. What happens when the initial angle θ_A is 0? T = mg

$$= m \frac{gL + 2gL(1 - \cos \theta_A)}{L} \qquad \therefore T = mg(3 - 2\cos \theta_A)$$

רחז אין 1443-001, Summer 2006 Dr. Jaehoon Yu

Work Done by Non-conserve Forces

Mechanical energy of a system is not conserved when any one of the forces in the system is a non-conservative (dissipative) force.

Two kinds of non-conservative forces:

Applied forces: Forces that are <u>external</u> to the system. These forces can take away or add energy to the system. So the <u>mechanical energy of the system is no longer conserved.</u>

If you were to hit a free falling ball, the force you apply to the ball is external to the system of ball and the Earth. Therefore, you add kinetic energy to the ball-Earth system.

$$W_{you}+W_g=\Delta K; \quad W_g=-\Delta U$$

$$W_{you} = W_{applied} = \Delta K + \Delta U$$

Kinetic Friction: <u>Internal</u> non-conservative force that causes irreversible transformation of energy. The friction force causes the kinetic and potential energy to transfer to internal energy

$$W_{friction} = \Delta K_{friction} = -f_k d$$

$$\Delta E = E_f - E_i = \Delta K + \Delta U = -f_k d$$

Example of Non-Conservative Force

A skier starts from rest at the top of frictionless hill whose vertical height is 20.0 m and the inclination angle is 20° . Determine how far the skier can get on the snow at the bottom of the hill with a coefficient of kinetic friction between the ski and the snow is 0.210.

Don't we need to know mass?

Compute the speed at the bottom of the hill, using the mechanical energy conservation on the hill before friction starts working at the bottom

$$ME = mgh = \frac{1}{2}mv^{2}$$

$$v = \sqrt{2gh}$$

$$v = \sqrt{2 \times 9.8 \times 20.0} = 19.8m/s$$

h=20.0m $\theta=20$

The change of kinetic energy is the same as the work done by kinetic friction.

What does this mean in this problem?

$$\Delta K = K_f - K_i = -f_k d$$

Since
$$K_f = 0$$
 $-K_i = -f_k d$; $f_k d = K_i$

$$f_k = \mu_k n = \mu_k mg$$

$$d = \frac{K_i}{\mu_k mg} = \frac{\frac{1}{2} mv^{-2}}{\mu_k mg} = \frac{v^2}{2\mu_k g} = \frac{(19.8)^2}{2 \times 0.210 \times 9.80} = 95.2m$$

Since we are interested in the distance the skier can get to before stopping, the friction must do as much work as the available kinetic energy to take it all away.

Well, it turns out we don't need to know mass.

What does this mean?

No matter how heavy the skier is he will get as far as anyone else has gotten.

Tuesday, June 13, 2006

