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PHYS 1443 – Section 001
Lecture #11

Tuesday, June 20, 2006
Dr. Jaehoon Yu

• Linear Momentum
• Linear Momentum and Forces
• Conservation of Momentum
• Impulse and Momentum Change
• Collisions
• Two Dimensional Collision s
• Center of Mass

Today’s homework is HW #6, due 7pm, Friday, June 23!!
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Announcements
• Quiz this Thursday

– Eerly in the class
– Covers Ch. 8.5 – Ch. 9

• Mid-term grade discussions tomorrow
– Bottom half of the class
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Linear Momentum
The principle of energy conservation can be used to solve problems 
that are harder to solve just using Newton’s laws.   It is used to 
describe motion of an object or a system of objects.
A new concept of linear momentum can also be used to solve physical problems, 
especially the problems involving collisions of objects.

p ≡Linear momentum of an object whose mass is m 
and is moving at a velocity of v is defined as 

What can you tell from this 
definition about momentum?

What else can use see from the 
definition?  Do you see force?

The change of momentum in a given time interval

p
t

∆
=

∆
0mv mv

t
−

=
∆

( )0m v v
t
−

=
∆

vm
t

∆
=

∆
F∑ma =

1. Momentum is a vector quantity.
2. The heavier the object the higher the momentum
3. The higher the velocity the higher the momentum
4. Its unit is kg.m/s

mv
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Linear Momentum and Forces
What can we learn from this Force-momentum 
relationship?

Something else we can do 
with this relationship.  What 
do you think it is?

F =∑

The relationship can be used to study 
the case where the mass changes as a 
function of time.

Can you think of a 
few cases like this?

Motion of a meteorite Motion of a rocket 

• The rate of the change of particle’s momentum is the same as 
the net force exerted on it.

• When net force is 0, the particle’s linear momentum is 
constant as a function of time.

• If a particle is isolated, the particle experiences no net force. 
Therefore its momentum does not change and is conserved.

dpF
dt

=∑
( )d mv
dt

= dm v
dt

=
dvm
dt

+

dp
dt
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Conservation of Linear Momentum in a Two 
Particle System

Consider an isolated system with two particles that does not have any 
external forces exerting on it.    What is the impact of Newton’s 3rd Law?

Now how would the momenta
of these particles look like?

If particle#1 exerts force on particle #2, there must be another force that 
the particle #2 exerts on #1 as the reaction force.   Both the forces are 
internal forces and the net force in the entire SYSTEM is still 0. 

Let say that the particle #1 has momentum 
p1 and #2 has p2 at some point of time.

Using momentum-
force relationship

1
21

dpF
dt

=

And since net force 
of this system is 0

2 1p p const+ =Therefore

F∑
The total linear momentum of the system is conserved!!!

and

12 21F F= + 2 1dp dp
dt dt

= + ( )2 1
d p p
dt

= + 0=

2
12

dpF
dt

=
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Linear Momentum Conservation

1 2i ip p+ =

1 2f fp p+ =

1 1 2 2m v m v+

1 1 2 2m v m v′ ′+
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More on Conservation of Linear Momentum in 
a Two Particle System

What does this mean? As in the case of energy conservation, this means 
that the total vector sum of all momenta in the 
system is the same before and after any interaction

Mathematically this statement can be written as 

Whenever two or more particles in an 
isolated system interact, the total 
momentum of the system remains constant.

p =∑
From the previous slide we’ve learned that the total 
momentum of the system is conserved if no external 
forces are exerted on the system.

2 1i ip p+ =

This can be generalized into 
conservation of linear momentum 
in many particle systems.

∑∑ =
system

xf
system

xi PP ∑∑ =
system

yf
system

yi PP ∑∑ =
system

zf
system

zi PP

2 1f fp p+

2 1p p+ =const
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Example for Linear Momentum Conservation
Estimate an astronaut’s resulting velocity after he throws his book to a 
direction in the space to move to a direction.

ip
From momentum conservation, we can writevA vB

Assuming the astronaut’s mass is 70kg, and the book’s 
mass is 1kg and using linear momentum conservation

Av =

Now if the book gained a velocity 
of 20 m/s in +x-direction, the 
Astronaut’s velocity is

Av =

A A B Bm v m v= +

B B

A

m v
m

− = 1
7 0 Bv−

( )1 20
70

i− = ( )0.3  /i m s−

0= fp=
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Impulse and Linear Momentum 

By integrating the above 
equation in a time interval ti to 
tf, one can obtain impulse I.

Effect of the force F acting on a particle over the time 
interval ∆t=tf-ti is equal to the change of the momentum of 
the particle caused by that force.   Impulse is the degree of 
which an external force changes momentum.

The above statement is called the impulse-momentum theorem and is equivalent to Newton’s second law.  

dpF
dt

=Net force causes change of momentum Î
Newton’s second law

So what do you 
think an impulse is?

What are the 
dimension and 
unit of Impulse?  
What is the 
direction of an 
impulse vector? 

Defining a time-averaged force 

1
i

i
F F t

t
≡ ∆
∆ ∑

Impulse can be rewritten 

I F t≡ ∆

If force is constant  

I F t≡ ∆
It is generally assumed that the impulse force acts on a 
short time but much greater than any other forces present.

dp Fdt=

f

i

t

t
dp =∫ f ip p− = p∆ = f

i

t

t
Fdt =∫ I
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Example 9-6
(a) Calculate the impulse experienced when a 70 kg person lands on firm ground 
after jumping from a height of 3.0 m.  Then estimate the average force exerted on 
the person’s feet by the ground, if the landing is (b) stiff-legged and (c) with bent 
legs. In the former case, assume the body moves 1.0cm during the impact, and in 
the second case, when the legs are bent, about 50 cm.

We don’t know the force.   How do we do this?
Obtain velocity of the person before striking the ground.

KE = 21
2

mv = ( )img y y− − = imgy

v =
Solving the above for velocity v, we obtain

2 igy = 2 9.8 3 7.7 /m s⋅ ⋅ =

Then as the person strikes the ground, the 
momentum becomes 0 quickly giving the impulse

I F t= ∆ =

70 7.7 / 540kg m s N s= − ⋅ = − ⋅

p∆ = f ip p− = 0 mv− =

PE−∆
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Example 9 – 6 cont’d
In coming to rest, the body decelerates from 7.7m/s to 0m/s in a distance d=1.0cm=0.01m. 

The average speed during this period is v =

The time period the collision lasts is t∆ =

0
2

iv+
=

7.7 3.8 /
2

m s=

d
v
= 30.01 2.6 10

3.8 /
m s

m s
−= ×

Since the magnitude of impulse is I F t= ∆ = 540N s⋅
The average force on the feet during 
this landing is

F =
I
t
=

∆
5

3

540 2.1 10
2.6 10

N− = ×
×

How large is this average force? 2 270 9.8 / 6.9 10Weight kg m s N= ⋅ = ×
5 22.1 10 304 6.9 10F N N= × = × × = 304 Weight×

If landed in stiff legged, the feet must sustain 300 times the body weight.  The person will 
likely break his leg.
For bent legged landing: t∆ =

d
v
= 0.50 0.13

3.8 /
m s

m s
=

F = 3540 4.1 10 5.9
0.13

N Weight= × =
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Another Example for Impulse
In a crash test, an automobile of mass 1500kg collides with a wall.  The initial and 
final velocities of the automobile are vi= -15.0i m/s and vf=2.60i m/s.  If the collision 
lasts for 0.150 seconds, what would be the impulse caused by the collision and the 
average force exerted on the automobile?

ip

Let’s assume that the force involved in the collision is a lot larger than any other 
forces in the system during the collision.   From the problem, the initial and final 
momentum of the automobile before and after the collision is 

Therefore the impulse on the 
automobile due to the collision  is

The average force exerted on the 
automobile during the collision  is

F

I

imv= ( )1500 15.0 22500  /i i kg m s= × − = − ⋅

fp fmv= ( )1500 2.60 3900  /i i kg m s= × = ⋅

p= ∆ f ip p= − ( )3900 22500  /i kg m s= + ⋅
426400  / 2.64 10  /i kg m s i kg m s= ⋅ = × ⋅

p
t

∆
=

∆

42 .6 4 1 0
0 .1 5 0

i×
=

5 2 51.76 10  / 1.76 10  Ni kg m s i= × ⋅ = ×
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Collisions 

Consider a case of a collision 
between a proton on a helium ion. 

The collisions of these ions never involve 
physical contact because the electromagnetic 
repulsive force between these two become great 
as they get closer causing a collision.

Generalized collisions must cover not only the physical contact but also the collisions 
without physical contact such as that of electromagnetic ones in a microscopic scale.

1 21dp F dt=t

F F12

F21

Assuming no external forces, the force 
exerted on particle 1 by particle 2, F21, 
changes the momentum of particle 1 by  

Likewise for particle 2 by particle 1  
2 12dp F dt=

Using Newton’s 3rd law we obtain   

So the momentum change of the system in the 
collision is 0, and the momentum is conserved

2dp

dp
12F dt= 21F dt=− 1dp=−

1 2dp dp= +

systemp 1 2p p= + constant=
0=
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Elastic and Inelastic Collisions 

Collisions are classified as elastic or inelastic based on whether the kinetic energy 
is conserved, meaning whether it is the same before and after the collisions.

A collision in which the total kinetic energy and momentum 
are the same before and after the collision.  

Momentum is conserved in any collisions as long as external forces are negligible.

Elastic 
Collision

Two types of inelastic collisions:Perfectly inelastic and inelastic  

Perfectly Inelastic: Two objects stick together after the collision, 
moving together at a certain velocity.
Inelastic: Colliding objects do not stick together after the collision but 
some kinetic energy is lost.

Inelastic 
Collision

A collision in which the total kinetic energy is not the same 
before and after the collision, but momentum is.

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.  



Tuesday, June 20, 2006 PHYS 1443-001, Summer 2006
Dr. Jaehoon Yu

15

Elastic and Perfectly Inelastic Collisions 
In perfectly Inelastic collisions, the objects stick 
together after the collision, moving together.  
Momentum is conserved in this collision, so the 
final velocity of the stuck system is

How about elastic collisions?

1 1 2 2i im v m v+

In elastic collisions, both the 
momentum and the kinetic energy 
are conserved. Therefore, the 
final speeds in an elastic collision 
can be obtained in terms of initial 
speeds as 

1 1 2 2i imv m v+

( )2
1

2
11 fi vvm −

( ) ( )fifi vvmvvm 222111 −=−

iif v
mm

mv
mm
mmv 2

21

2
1

21

21
1

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=

1 2( ) fm m v= +

1 1 2 2

1 2( )
i i

f
m v m vv

m m
+

=
+

1 1 2 2f fmv mv= +

2
22

2
11 2

1
2
1

ii vmvm + 2
22

2
11 2

1
2
1

ff vmvm +=

( )2
2

2
22 fi vvm −=

( )( )fifi vvvvm 11111 +− ( )( )fifi vvvvm 22222 +−=

From momentum 
conservation above

iif v
mm
mmv

mm
mv 2

21

21
1

21

1
2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

What happens when the two masses are the same?
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Example for Collisions
A car of mass 1800kg stopped  at a traffic light is rear-ended by a 900kg car, and 
the two become entangled.  If the lighter car was moving at 20.0m/s before the 
collision what is the velocity of the entangled cars after the collision?

ip
The momenta before and after the collision are

What can we learn from these equations 
on the direction and magnitude of the 
velocity before and after the collision?

m1

20.0m/s

m2

vf
m1

m2

Since momentum of the system must be conserved

i fp p=

The cars are moving in the same direction as the lighter 
car’s original direction to conserve momentum. 
The magnitude is inversely proportional to its own mass.

Before collision

After collision

1 1 2 2i im v m v= + 2 20 im v= +

fp 1 1 2 2f fm v m v= + ( )1 2 fm m v= +

( )1 2 fm m v+ 2 2im v=

fv ( )
2 2

1 2

im v
m m

=
+

900 20.0 6.67  /
900 1800

i i m s×
= =

+
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Two dimensional Collisions 
In two dimension, one needs to use components of momentum and 
apply momentum conservation to solve physical problems.

1 1 2 2i im v m v+ =

2
1 12

1
i

vm

m2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

Consider a system of two particle collisions and scattersin
two dimension as shown in the picture.  (This is the case at 
fixed target accelerator experiments.)  The momentum 
conservation tells us:

1 1 2 2i im v m v+

And for the elastic collisions, the 
kinetic energy is conserved:

What do you think 
we can learn from 
these relationships?

fxfx vmvm 2211 += φθ coscos 2211 ff vmvm +=

iyvm 11 0= fyfy vmvm 2211 += φθ sinsin 2211 ff vmvm −=

1 1imv=

ixvm 11

2
22

2
11 2

1
2
1

ff vmvm +=

1 1 2 2ix ixm v m v+ =

1 1 2 2iy iym v m v+ =

x-comp.

y-comp.

1 1 2 2f fm v m v+

1 1 2 2fx fxm v m v+

1 1 2 2fy fym v m v+
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Example for Two Dimensional Collisions
Proton #1 with a speed 3.50x105 m/s collides elastically with proton #2 initially at 
rest.  After the collision, proton #1 moves at an angle of 37o to the horizontal axis 
and proton #2 deflects at an angle φ to the same axis.  Find the final speeds of the 
two protons and the scattering angle of proton #2, φ.

Since both the particles are protons m1=m2=mp.
Using momentum conservation, one obtainsm2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

ipvm 1

Canceling mp and put in all known quantities, one obtains

smv f /1080.2 5
1 ×=

From kinetic energy 
conservation:

( ) (3)    1050.3 2
2

2
1

25
ff vv +=×

Solving Eqs. 1-3 
equations, one gets

(1)   1050.3cos37cos 5
21 ×=+ φff vv

Do this at 
home☺

φθ coscos 21 fpfp vmvm +=

φθ sinsin 21 fpfp vmvm − 0=

x-comp.

y-comp.

(2)    sin37sin 21 φff vv =

smv f /1011.2 5
2 ×=

0.53=φ


