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PHYS 1443 – Section 001
Lecture #14

Monday, June 26, 2006
Dr. Jaehoon Yu

• Moment of Inertia
• Parallel Axis Theorem 
• Torque and Angular Acceleration
• Rotational Kinetic Energy
• Work, Power and Energy in Rotation 
• Angular Momentum & Its Conservation
• Similarity of Linear and Angular Quantities
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Announcements
• Quiz Results

– Average: 60.2
– Top score: 100

• Last quiz this Wednesday
– Early in the class
– Covers Ch. 10 – what we cover tomorrow

• Final exam
– Date and time: 8 – 10am, Friday, June 30
– Location: SH103
– Covers: Ch 9 – what we cover by Wednesday
– No class this Thursday
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Moment of Inertia 
Rotational Inertia:

What are the dimension and 
unit of Moment of Inertia?

I ≡

2mkg⋅[ ]2ML

Measure of resistance of an object to 
changes in its rotational motion.  
Equivalent to mass in linear motion.

Determining Moment of Inertia is extremely important for 
computing equilibrium of a rigid body, such as a building.

I ≡For a group 
of particles

For a rigid 
body

2
i i

i

mr∑ 2r dm∫

Dependent on the axis of rotation!!!
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Example for Moment of Inertia
In a system of four small spheres as shown in the figure, assuming the radii are negligible 
and the rods connecting the particles are massless, compute the moment of inertia and 
the rotational kinetic energy when the system rotates about the y-axis at angular speed ω.

I

Since the rotation is about y axis, the moment of 
inertia about y axis, Iy, is

RKThus, the rotational kinetic energy is 

Find the moment of inertia and rotational kinetic energy when the system rotates on 
the x-y plane about the z-axis that goes through the origin O.

x

y

This is because the rotation is done about y axis, 
and the radii of the spheres are negligible.Why are some 0s?

M Ml l

m

m

b

b
O

I RK

2
i

i
irm∑= 2Ml= 22Ml=

2

2
1 ωI= ( ) 222

2
1 ωMl= 22ωMl=

2
i

i
irm∑= 2Ml= ( )222 mbMl += 2

2
1 ωI= ( ) 222 22

2
1 ωmbMl += ( ) 222 ωmbMl +=

2Ml+ 20m+ ⋅ 20m+ ⋅

2M l+ 2mb+ 2mb+
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Calculation of Moments of Inertia
Moments of inertia for large objects can be computed, if we assume 
the object consists of small volume elements with mass, ∆mi.

It is sometimes easier to compute moments of inertia in terms 
of volume of the elements rather than their mass

Using the volume density, ρ, replace 
dm in the above equation with dV.

The moment of inertia for the large rigid object is

How can we do this?

∑ ∆=
→∆ i

iim
mrI

i

2

0
lim ∫= dmr2

dV
dm

=ρ The moments of 
inertia becomes ∫= dVrI 2ρ

Example: Find the moment of inertia of a uniform hoop of mass M and radius R 
about an axis perpendicular to the plane of the hoop and passing through its center.

x

y

RO

dm The moment 
of inertia is ∫= dmrI 2

What do you notice 
from this result?

The moment of inertia for this 
object is the same as that of a 
point of mass M at the distance R.

∫= dmR2 2MR=

dVdm ρ=
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Example for Rigid Body Moment of Inertia
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis perpendicular to the rod and passing through its center of mass.

The line density of the rod is  

What is the moment of inertia 
when the rotational axis is at 
one end of the rod.

x

y

L
x

dx

L
M

=λ

so the masslet is  dm

The moment 
of inertia is  

I

∫= dmrI 2

Will this be the same as the 
above?  Why or why not?

Nope!  Since the moment of inertia is resistance to motion, it makes perfect sense 
for it to be harder to move when it is rotating about the axis at one end.

dxλ= dx
L
M

=

∫= dmr 2 dx
L
MxL

L∫−=
2/

2/

2 2/

2/

3

3
1 L

L

x
L
M

−
⎥⎦
⎤

⎢⎣
⎡=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛=

33

223
LL

L
M

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

43

3L
L

M
12

2ML
=

dx
L
MxL

∫= 0

2 L

x
L
M

0

3

3
1

⎥⎦
⎤

⎢⎣
⎡=

( )[ ]0
3

3 −= L
L

M ( )3

3
L

L
M

=
3

2ML
=
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x

y

(x,y)

xCM

(xCM,yCM)

y CM

CM

Parallel Axis Theorem
Moments of inertia for highly symmetric object is easy to compute if the 
rotational axis is the same as the axis of symmetry.  However if the axis of 
rotation does not coincide with axis of symmetry, the calculation can still be 
done in simple manner using parallel-axis theorem. 2MDII CM +=

y

x

r

Moment of inertia is defined ∫= dmrI 2

Since x and y are

x’

y’

'xxx CM +=

One can substitute x and y in Eq. 1 to obtain
( ) ( )[ ]∫ +++= dmyyxxI CMCM

22 ''

Since the x’ and y’ are the 
distances from CM, by definition ∫ = 0'dmx

D

Therefore, the parallel-axis theorem
CMIMD += 2

What does this 
theorem tell you?

Moment of inertia of any object about any arbitrary axis are the same as 
the sum of moment of inertia for a rotation about the CM and that of 
the CM about the rotation axis.

( )2 2   (1)x y dm= +∫
'yyy CM +=

( ) ( )dmyxdmyydmxxdmyx CMCMCMCM ∫∫∫∫ +++++= 2222 '''2'2

∫ = 0'dmy

( ) ( )dmyxdmyxI CMCM ∫∫ +++= 2222 ''
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Example for Parallel Axis Theorem
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis that goes through one end of the rod, using parallel-axis theorem.

The line density of the rod is  

Using the parallel axis theorem

L
M

=λ

so the masslet is  dx
L
Mdxdm ==λ

The moment of 
inertia about 
the CM 

CMI

MDII CM
2+=

The result is the same as using the definition of moment of inertia.
Parallel-axis theorem is useful to compute moment of inertia of a rotation of a rigid 
object with complicated shape about an arbitrary axis

x

y

L
x

dxCM

MLML 22

212
⎟
⎠
⎞

⎜
⎝
⎛+=

∫= dmr 2 dx
L
MxL

L∫−=
2/

2/

2 2/

2/

3

3
1 L

L

x
L
M

−
⎥⎦
⎤

⎢⎣
⎡=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛=

33

223
LL

L
M

1243

23 MLL
L

M
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

3412

222 MLMLML
=+=
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Torque & Angular Acceleration
Let’s consider a point object with mass m rotating on a circle.

What does this mean?

The tangential force Ft and radial force Fr

The tangential force Ft is

What do you see from the above relationship?

m
r

Ft

Fr

What forces do you see in this motion?

tt maF =

The torque due to tangential force Ft is rFt=τ

ατ I=
Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship? Analogs to Newton’s 2nd law of motion in rotation.

How about a rigid object?

r

dFt

dm

O

The external tangential force dFt is =tdF

=∑τ
The torque due to tangential force Ft is
The total torque is

=τd

What is the contribution due 
to radial force and why?

Contribution from radial force is 0, because its 
line of action passes through the pivoting 
point, making the moment arm 0.

αmr=
rmat= α2mr= αI=

=tdma αdmr

=rdFt ( )αdmr 2

=∫ dmr2α αI



Monday, June 26, 2006 PHYS 1443-001, Summer 2006
Dr. Jaehoon Yu

10

Example for Torque and Angular Acceleration
A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is 
free to rotate about the pivot in the vertical plane.  The rod is released from rest in the 
horizontal position. What are the initial angular acceleration of the rod and the initial linear 
acceleration of its right end?

The only force generating torque is the gravitational force Mg

τ

Using the relationship between tangential and 
angular acceleration

∫=
L

dmrI
0

2Since the moment of inertia of the rod 
when it rotates about one end

L/2

Mg

We obtain 

α
ta

What does this mean?
The tip of the rod falls faster than 
an object undergoing a free fall.

Fd=
2
LF=

2
LMg= αI=

∫=
L

dxx
0

2λ
L

x
L
M

0

3

3 ⎥⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

3

2ML
=

I
MgL
2

=

3
2 2ML
MgL

=
L
g

2
3

= αL=
2

3g
=
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Rotational Kinetic Energy
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is? 

Since a rigid body is a collection of masslets, the total kinetic energy of the 
rigid object is

Since moment of Inertia, I, is defined as

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is

ri

mi

θ

O x

y vi

iK

RK

∑=
i

iirmI 2

RK =The above expression is simplified as

2

2
1

iivm= 2= ω2
2
1

iirm

∑=
i

iK ∑ 2=
i

iirm ω2
2
1 2⎟

⎠

⎞
⎜
⎝

⎛
= ∑ ω

i
iirm 2

2
1

1
2

Iω2
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Total Kinetic Energy of a Rolling Body

Where, IP, is the moment of 
inertia about the point P.

Since it is a rotational motion about the point 
P, we can write the total kinetic energy

Since vCM=Rω, the above 
relationship can be rewritten as

2

2
1 ωPIK =

What do you think the total kinetic 
energy of the rolling cylinder is?

P

P’

CM
vCM

2vCM

Using the parallel axis theorem, we can rewrite

K

22

2
1

2
1

CMCM MvIK += ω

What does this equation mean? Rotational kinetic 
energy about the CM

Translational Kinetic 
energy of the CM

Total kinetic energy of a rolling motion is the sum 
of the rotational kinetic energy about the CM And the translational 

kinetic of the CM

2

2
1 ωPI= ( ) 22

2
1 ωMRICM += 222

2
1

2
1 ωω MRICM +=
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Kinetic Energy of a Rolling Sphere

Since vCM=Rω

Let’s consider a sphere with radius R 
rolling down a hill without slipping.

=K

R

xh
θ

vCM

ω

21
2

CM
CM

vI
R

⎛ ⎞= ⎜ ⎟
⎝ ⎠

Since the kinetic energy at the bottom of the hill must 
be equal to the potential energy at the top of the hill

What is the speed of the 
CM in terms of known 
quantities and how do you 
find this out?

K

2
22

1
CM

CM vM
R
I

⎟
⎠
⎞

⎜
⎝
⎛ +=

2
22

1
CM

CM vM
R
I

⎟
⎠
⎞

⎜
⎝
⎛ += Mgh=

2/1
2

MRI
ghv

CM
CM +

=

21
2 CMI ω 2 21

2
MR ω+

21
2 CMMv+
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Example for Rolling Kinetic Energy
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.  Solve this problem 
using Newton’s second law, the dynamic method.

∑ xF

Gravitational Force,

Since the forces Mg and n go through the CM, their moment arm is 0 
and do not contribute to torque, while the static friction f causes torque

M
xh
θ

αRaCM =

CMτ

We know that  

What are the forces involved in this motion?

Mg

f

Newton’s second law applied to the CM gives
Frictional Force, Normal Force

n

x

y

2

5
2 MRICM =

We 
obtain 

f

Substituting f in 
dynamic equations CMMaMg

5
7sin =θ

fMg −= θsin CMMa=

∑ yF θcosMgn−= 0=

fR= αCMI=

R
ICMα= ⎟

⎠
⎞

⎜
⎝
⎛=

R
a

R

MR
CM

2

5
2

CMMa
5
2

=

θsin
7
5 gaCM =
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Work, Power, and Energy in Rotation
Let’s consider a motion of a rigid body with a single external 
force F exerting on the point P, moving the object by ds.
The work done by the force F as the object rotates 
through the infinitesimal distance ds=rdθ is 

What is Fsinφ? The tangential component of force F.

dW

Since the magnitude of torque is rFsinφ,

F
φ

O

rdθ
ds

What is the work done by 
radial component Fcosφ?

Zero, because it is perpendicular to the 
displacement.

dW

The rate of work, or power becomes P How was the power 
defined in linear motion?

The rotational work done by an external force 
equals the change in rotational energy. ∑τ

The work put in by the external force then dW

F ds= ⋅ ( )cos( )F rdπ φ θ= −

θτd=

dt
dW

=
dt
dθτ

= τω=

αI= ⎟
⎠
⎞

⎜
⎝
⎛=

dt
dI ω

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=

dt
d

d
dI θ
θ
ω

θτd∑= ωωdI=
W ∫ ∑= f d

θ

θι
θτ ∫=

f dI
ω

ωι

ωω 22

2
1

2
1

if II ωω −=

( ) θφ drFsin=

⎟
⎠
⎞

⎜
⎝
⎛=

θ
ωω

d
dI

( ) θφ rdF sin=
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Angular Momentum of a Particle
If you grab onto a pole while running, your body will rotate about the pole, gaining 
angular momentum.   We’ve used linear momentum to solve physical problems 
with linear motions, angular momentum will do the same for rotational motions.

φsinmvrL =

Let’s consider a point-like object ( particle) with mass m located 
at the vector location r and moving with linear velocity v

L r p≡ ×
The angular momentum L of this 
particle relative to the origin O is 

What do you learn from this? If the direction of linear velocity points to the origin of 
rotation, the particle does not have any angular momentum.

What is the unit and dimension of angular momentum? 2 /kg m s⋅

Note that L depends on origin O. Why? Because r changes

The direction of L is +zWhat else do you learn? 
Since p is mv, the magnitude of L becomes

If the linear velocity is perpendicular to position vector, the 
particle moves exactly the same way as a point on a rim.

2 1[ ]MLT−
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Angular Momentum and Torque

Total external forces exerting on a particle is the same as the change of its linear momentum.

Can you remember how net force exerting on a particle 
and the change of its linear momentum are related?

τ∑

Thus the torque-angular 
momentum relationship

The same analogy works in rotational motion between torque and angular momentum. 

Net torque acting on a particle is 

The net torque acting on a particle is the same as the time rate change of its angular momentum

d pF
d t

=∑

d L
d t

d L
d t

τ =∑
x

y

z

O

pφ

L=rxp

r m Why does this work? Because v is parallel to 
the linear momentum

( )d r p
d t
×

=
d r d pp r
d t d t

= × + × 0 d pr
d t

= + ×

r F= × ∑ d pr
d t

= ×



Monday, June 26, 2006 PHYS 1443-001, Summer 2006
Dr. Jaehoon Yu

18

Angular Momentum of a System of Particles
The total angular momentum of a system of particles about some point 
is the vector sum of the angular momenta of the individual particles

1 2 ... . . . n i
L L L L L= + + + = ∑

Since the individual angular momentum can change, the total 
angular momentum of the system can change.

ex t
d L
d t

τ =∑
Thus the time rate change of the angular momentum of a 
system of particles is equal to the net external torque 
acting on the system

Let’s consider a two particle 
system where the two exert 
forces on each other.

Since these forces are action and reaction forces with 
directions lie on the line connecting the two particles, the 
vector sum of the torque from these two becomes 0.

Both internal and external forces can provide torque to individual particles.  
However, the internal forces do not generate net torque due to Newton’s third law.
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Example for Angular Momentum
A particle of mass m is moving on the xy plane in a circular path of radius r and linear 
velocity v about the origin O.  Find the magnitude and direction of angular momentum 
with respect to O.

r

x

y v

O

L

Using the definition of angular momentum

Since both the vectors, r and v, are on x-y plane and 
using right-hand rule, the direction of the angular 
momentum vector is +z (coming out of the screen)

The magnitude of the angular momentum is L

So the angular momentum vector can be expressed as L mrvk=

Find the angular momentum in terms of angular velocity ω.

L

Using the relationship between linear and angular speed 

r p= × r m v= × m r v= ×

mr v= × φsinmrv= 90sinmrv= mrv=

mrvk= 2mr kω= 2mr ω= Iω=


