PHYS 1441 – Section 001 Lecture #3

Thursday, May 29, 2008 Dr. <mark>Jae</mark>hoon <mark>Yu</mark>

- One Dimensional Motion:
- Average Velocity
- Average Acceleration
- Motion under constant acceleration
- Free Fall
- Two dimensional Motion

Today's homework is homework #2, due 9pm, Monday, June 2!!

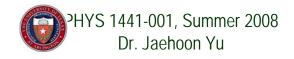


Announcements

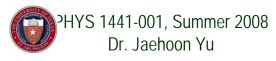
- E-mail Distribution list
 - 30 out of 55 registered as of this morning!!
 - 5 points extra credit if done by Friday, May 30
 - 3 points extra credit if done by next Monday, June 2
- Extra credit opportunity
 - Special department colloquium at 4pm, today Thursday, in SH103
 - Refreshment at 3:30pm in SH108
 - Dr. Sandip Chakrabarti
 - Copies of extra fliers will be available for you to get the signature of the speaker
- There will be a quiz in class Monday, June 2
 - Appendices + CH1 CH2
- First term exam
 - 8 10am, Next Wednesday, June 4, in SH103
 - Covers CH1 what we finish next Tuesday + appendices

Special Problems for Extra Credit

- Derive the quadratic equation for yx²-zx+v=0
 → 5 points
- Derive the kinematic equation $v^2 = v_0^2 + 2a(x x_0)$ from first principles and the known kinematic equations \rightarrow 10 points
- You must <u>show your work in detail</u> to obtain the full credit
- Due next Tuesday, June 3



Displacement, Velocity and Speed One dimensional displacement is defined as: $\Delta x \equiv x_f - x_i$ A vector quantity Displacement is the difference between initial and final potions of the motion and is a vector quantity. How is this different than distance? Unit? m The average velocity is defined as: $v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t} \equiv \frac{\text{Displacement}}{\text{Elapsed Time}}$ Displacement per unit time in the period throughout the motion The average speed is defined as: $v \equiv \frac{\text{Total Distance Traveled}}{2}$ Total Elapsed Time Unit? m/s A scalar quantity



Example 1 Distance Run by a Jogger How far does a jogger run in 1.5 hours (5400 s) if his average speed is 2.22 m/s?

Average speed = $\frac{\text{Distance}}{\text{Elapsed time}}$

Distance = (Average speed) (Elapsed time) = (2.22 m/s)(5400 s) = 12000 m

Example 2 The World's Fastest Jet-Engine Car Andy Green in the car *ThrustSSC* set a world record of 341.1 m/s in 1997. To establish such a record, the driver makes two runs through the course, one in each direction to nullify wind effects. From the data, determine the average velocity for each run.

$$\overline{\mathbf{v}} = \frac{\Delta \overline{\mathbf{x}}}{\Delta t} = \frac{+1609 \text{ m}}{4.740 \text{ s}} = +339.5 \text{ m/s}$$

What is the speed? $v = |\vec{\mathbf{v}}| = 339.5 \,\mathrm{m/s}$

$$t_0 = 0 \text{ s}$$

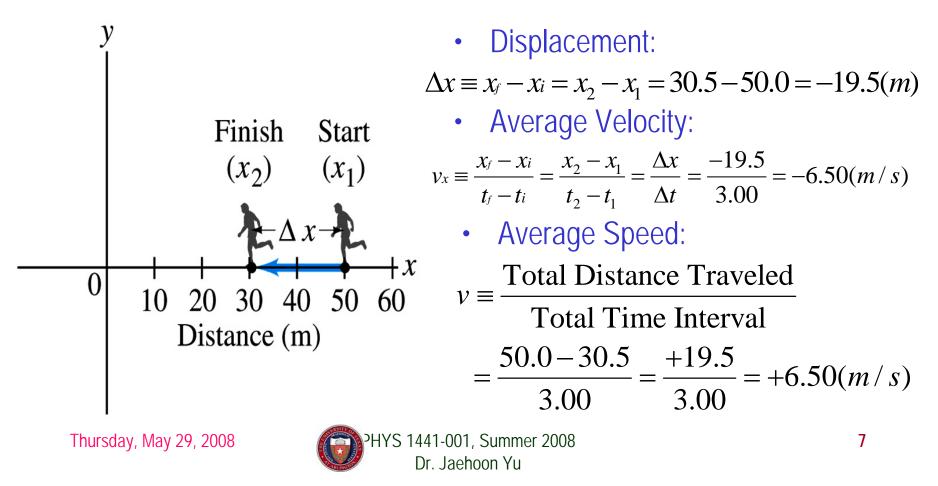
$$t = 4.740 \text{ s}$$

$$f = 4.740 \text{ s}$$

$$\vec{\mathbf{v}} = \frac{\Delta \vec{\mathbf{x}}}{\Delta t} = \frac{-1609 \text{ m}}{4.695 \text{ s}} = -342.7 \text{ m/s}$$
What is the speed? $v = |\vec{\mathbf{v}}| = |-342.7 \text{ m/s}|$
Thursday, May 29, 2008
$$= 342.7 \text{ m/s} \text{ Summer 2000}$$
Dr. Jaeboon Yu

Example for displacement, velocity and speed

The position of a runner as a function of time is plotted as moving along the x axis of a coordinate system. During a 3.00-s time interval, the runner's position changes from x_1 =50.0m to x_2 =30.5 m, as shown in the figure. What was the runner's average velocity? What was the average speed?



Instantaneous Velocity and Speed

- Can average quantities tell you the detailed story of the whole motion?
- Instantaneous velocity is defined as:
 - What does this mean?

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

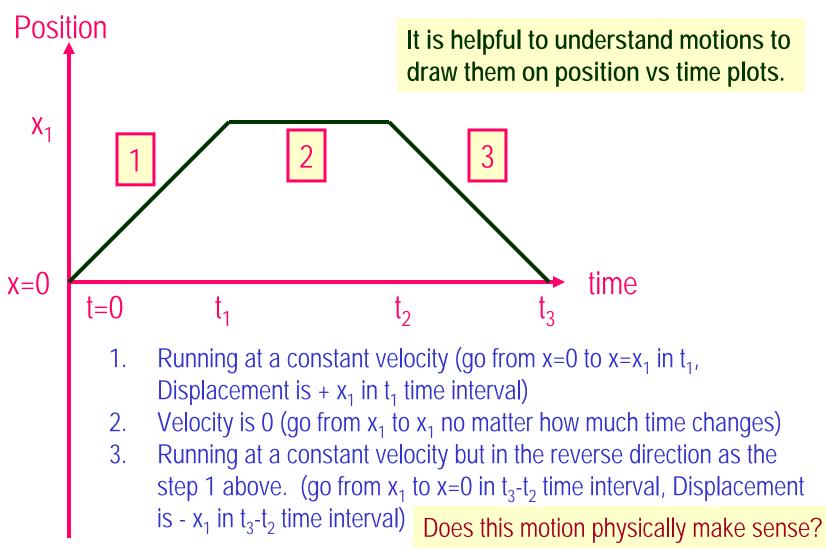
- Displacement in an infinitesimal time interval
- Velocity at any given moment

 Instantaneous speed is the size (magnitude) of the velocity vector: Speed at any given moment

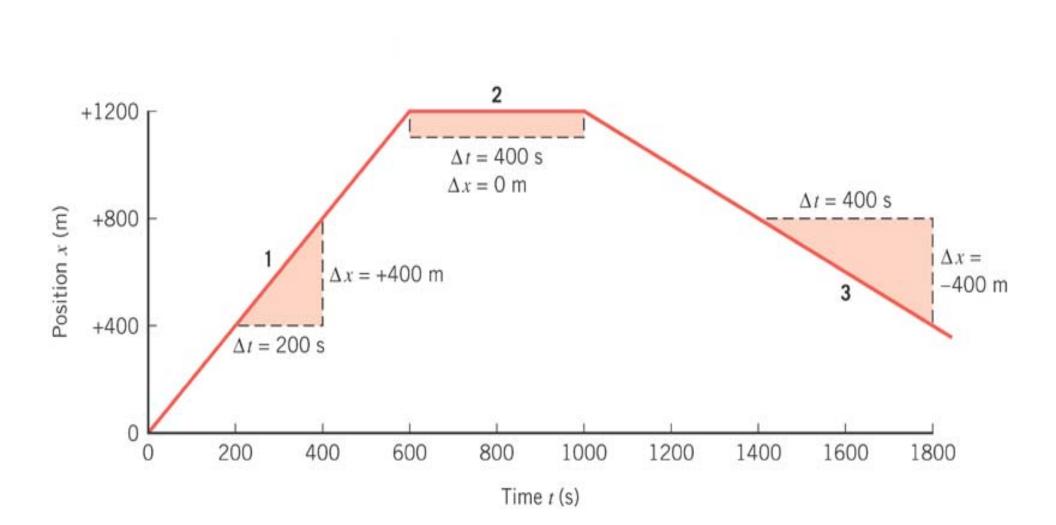
$$|v_x| = \left| \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \right|$$

*Magnitude of Vectors are expressed in absolute values

Position vs Time Plot

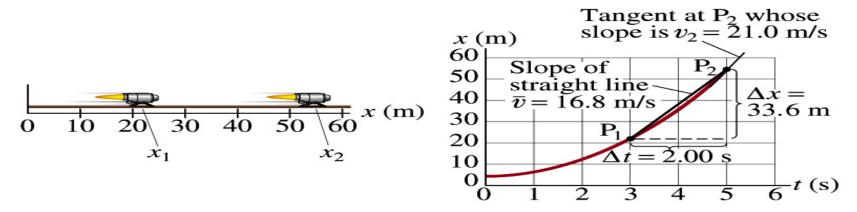


Thursday, May 29, 2008



Example

A jet engine moves along a track. Its position as a function of time is given by the equation $\chi = At^2 + B$ where A=2.10m/s² and B=2.80m.



(a) Determine the displacement of the engine during the interval from $t_1=3.00s$ to $t_2=5.00s$. $x_1 = x_{t_1=3.00} = 2.10 \times (3.00)^2 + 2.80 = 21.7m$ $x_2 = x_{t_2=5.00} = 2.10 \times (5.00)^2 + 2.80 = 55.3m$

Displacement is, therefore:

$$\Delta x = x_2 - x_1 = 55.3 - 21.7 = +33.6(m)$$

(b) Determine the average velocity during this time interval.

$$\overline{v}_x = \frac{\Delta x}{\Delta t} = \frac{33.6}{5.00 - 3.00} = \frac{33.6}{2.00} = 16.8 (m/s)$$

Thursday, May 29, 2008

PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Displacement, Velocity and Speed

Displacement

Average velocity

Average speed

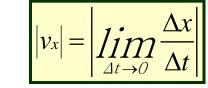
$$\Delta x \equiv x_f - x_i$$

$$v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$$

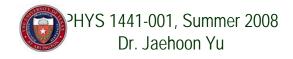
Total Distance Traveled $v \equiv -$ **Total Time Spent**

Instantaneous velocity

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$



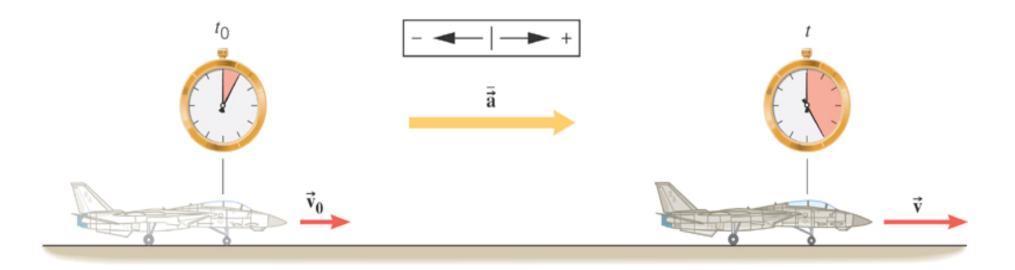
Instantaneous speed



Acceleration

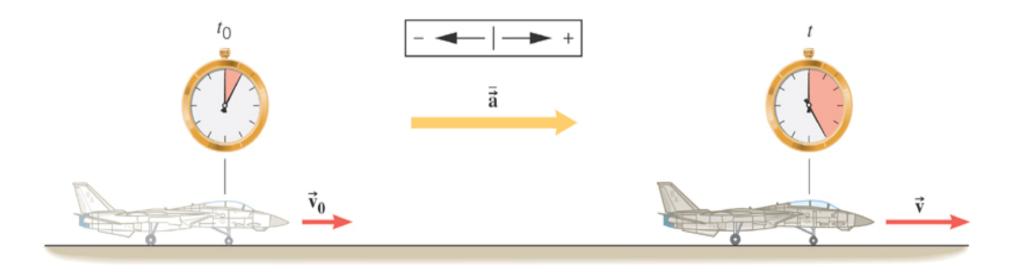
Change of velocity in time (what kind of quantity is this?) Vector!!

The notion of *acceleration* emerges when a change in velocity is combined with the time during which the change occurs.

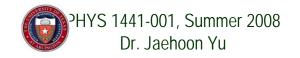




Definition of Average Acceleration

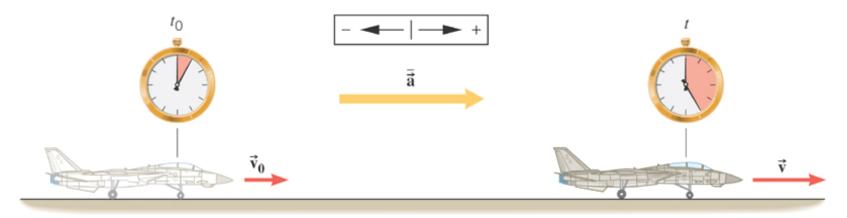


$$\vec{\vec{a}} \equiv \frac{\vec{v} - \vec{v}_0}{t - t_0} = \frac{\Delta \vec{v}}{\Delta t}$$



Ex. 3: Acceleration and Increasing Velocity

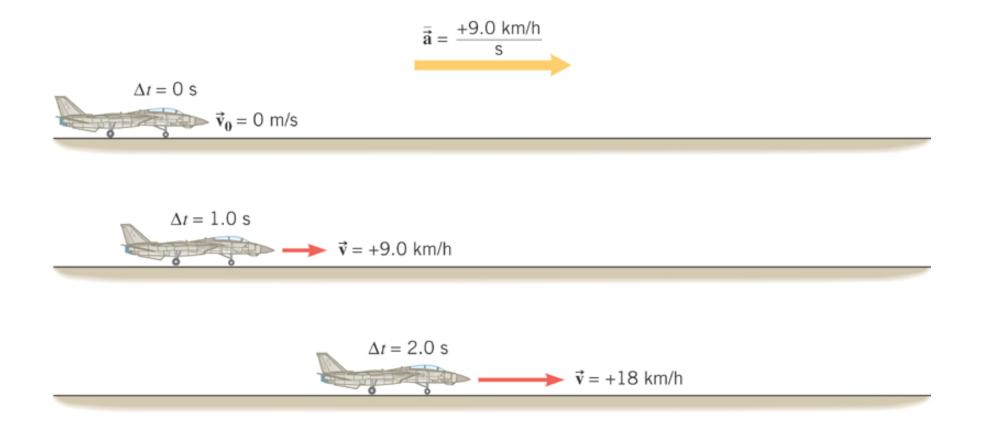
Determine the average acceleration of the plane.

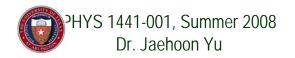


$$t_{o} = 0 \text{ s} \quad \vec{\mathbf{v}}_{o} = 0 \text{ m/s} \qquad t = 29 \text{ s} \quad \vec{\mathbf{v}} = 260 \text{ km/h}$$
$$\vec{\mathbf{a}} = \frac{\vec{\mathbf{v}} - \vec{\mathbf{v}}_{o}}{t - t_{o}} = \frac{260 \text{ km/h} - 0 \text{ km/h}}{29 \text{ s} - 0 \text{ s}} = +9.0 \frac{\text{ km/h}}{\text{ s}} = +9.0 \frac{\text{ km/h}}{\text{ s}} = +\frac{9 \cdot 1000 \text{ m}}{3600 \text{ s} \cdot \text{ s}} = 2.5 \text{ m/s}^{2}$$
Thursday, May 29, 2008

15

2.3 Acceleration



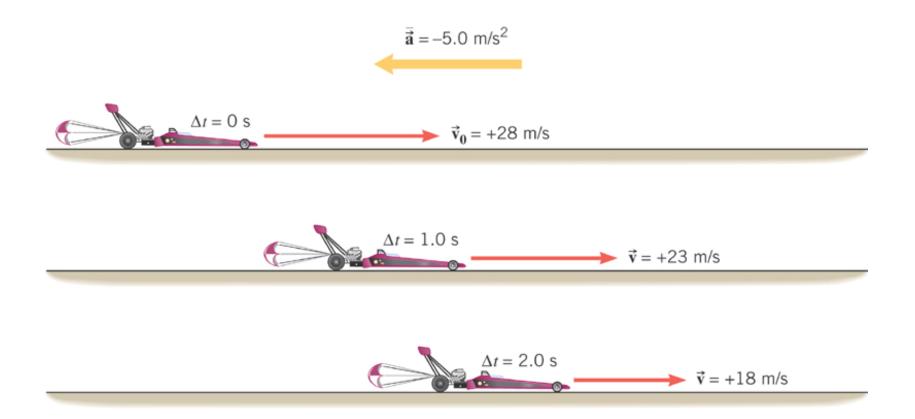


Ex.4 Acceleration and Decreasing Velocity

A drag racer crosses the finish line, and the driver deploys a parachute and applies the brakes to slow down. The driver begins slowing down when $t_0=9.0s$ and the car's velocity is $v_0=+28m/s$. When t=12.0s, the velocity has been reduced to v=+13m/s. What is the average acceleration of the dragster?

$$\vec{\mathbf{a}} = \frac{\vec{\mathbf{v}} - \vec{\mathbf{v}}_o}{t - t_o} = \frac{13 \,\mathrm{m/s} - 28 \,\mathrm{m/s}}{12 \,\mathrm{s} - 9 \,\mathrm{s}} = \frac{12 \,\mathrm{s} - 9 \,\mathrm{s}}{-5.0 \,\mathrm{m/s}^2}$$

J



Deceleration is an Acceleration in the opposite direction!!

Thursday, May 29, 2008

Acceleration Summary

Change of velocity in time (what kind of quantity is this?) Vector!!

•Average acceleration:

$$\vec{a} \equiv \frac{\vec{v}_f - \vec{v}_i}{t_f - t_i} = \frac{\Delta \vec{v}}{\Delta t}$$
 analogous to $\vec{v} \equiv \frac{\vec{x}_f - \vec{x}_i}{t_f - t_i} = \frac{\Delta \vec{x}}{\Delta t}$

Instantaneous acceleration:

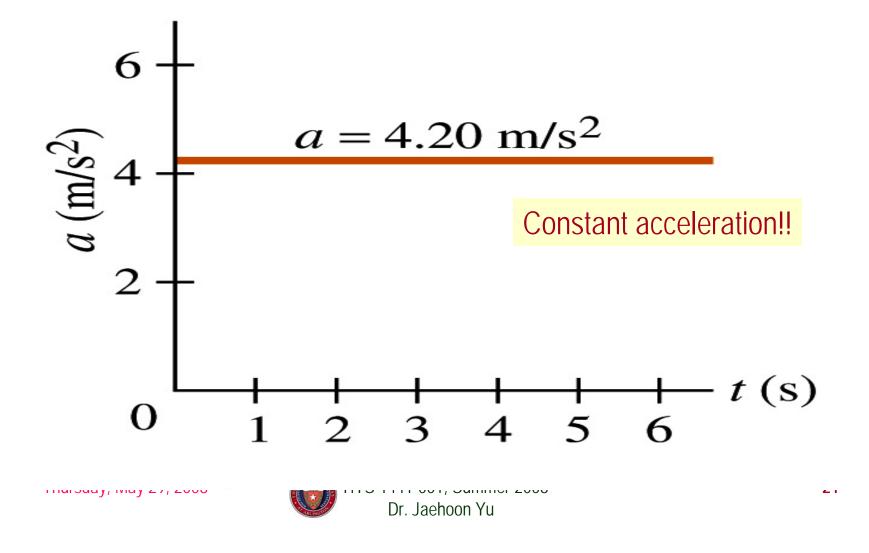
$$a_{x} \equiv \lim_{\Delta t \to 0} \frac{\Delta v_{x}}{\Delta t} \quad \text{analogous to} \quad v_{x} \equiv \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

Meanings of the Acceleration

- When an object is moving at a constant velocity (v=v₀), there is no acceleration (a=0)
 - Is there any net acceleration when an object is not moving?
- When an object speeds up as time goes on, (v=v(t)), acceleration has the same sign as v.
- When an object slows down as time goes on, (v=v(t)), acceleration has the opposite sign as v.
- Is there acceleration if an object moves in a constant speed but changes direction? YES!!

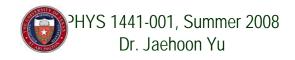
One Dimensional Motion

 Let's start with the simplest case: the acceleration is constant (a=a₀)



Equations of Kinematics

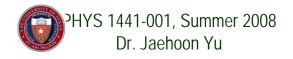
- Five kinematic variables
 - displacement, x
 - acceleration (constant), a
 - final velocity (at time *t*), ν
 - initial velocity, ν_o
 - elapsed time, t



One Dimensional Kinematic Equation

- Let's start with the simplest case: the acceleration is constant $(a=a_0)$
- Using definitions of average acceleration and velocity, we can derive equation of motion (description of motion, position *wrt* time)

$$\overline{a} = \frac{v - v_0}{t - t_0} = a \qquad \underbrace{\overset{\text{Let } t = t \text{ and}}{\overset{t_0 = 0}{}} \quad a = \frac{v - v_0}{t}$$



One Dimensional Kinematic Equation

For constant acceleration simple nu

numeric average

$$\overline{v} = \frac{x - x_0}{t - t_0}$$

$$\underbrace{\begin{array}{c} z = \frac{v + v_0}{2} = \frac{2v_0 + u}{2} = v_0 + \frac{1}{2}at}{t}$$

$$\overline{v} = \frac{x - x_0}{t}$$

$$\underbrace{\begin{array}{c} z = t = t \text{ and} \\ t_0 = 0 \end{array}}{v}$$

$$\overline{v} = \frac{x - x_0}{t}$$

$$\underbrace{\begin{array}{c} z = x - x_0 \\ t \end{array}}{v}$$

11

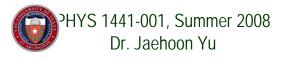
110

Resulting Equation of Motion becomes

$$x = x_{0} + \overline{v}t = x_{0} + v_{0}t + \frac{1}{2}at^{2}$$

211 at

Thursday, May 29, 2008



1

Kinematic Equations of Motion on a Straight Line Under Constant Acceleration

$$v(t) = v_0 + at$$

Velocity as a function of time

$$x - x_0 = \frac{1}{2}\overline{v}t = \frac{1}{2}(v + v_0)t$$

Displacement as a function of velocities and time

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$v^{2} = v_{0}^{2} + 2a(x - x_{0})$$

Displacement as a function of time, velocity, and acceleration

Velocity as a function of Displacement and acceleration

You may use different forms of Kinematic equations, depending on the information given to you in specific physical problems!!

Thursday, May 29, 2008

How do we solve a problem using a kinematic formula under constant acceleration?

- Identify what information is given in the problem. •
 - Initial and final velocity?
 - Acceleration?
 - Distance, initial position or final position?
 - Time?
- Convert the units of all quantities to SI units to be consistent.
- Identify what the problem wants •
- Identify which kinematic formula is appropriate and easiest to • solve for what the problem wants.
 - Frequently multiple formulae can give you the answer for the quantity you are looking for. \rightarrow Do not just use any formula but use the one that can be easiest to solve.
- Solve the equations for the quantity or quantities wanted. •

Thursday, May 29, 2008

Example 8 An Accelerating Spacecraft

A spacecraft is traveling with a velocity of +3250 m/s. Suddenly the retrorockets are fired, and the spacecraft begins to slow down with an acceleration whose magnitude is 10.0 m/s². What is the velocity of the spacecraft when the displacement of the craft is +215 km, relative to the point where the retrorockets began firing?

X	а	V	V _o	t
+215000 m	-10.0 m/s ²	?	+3250 m/s	

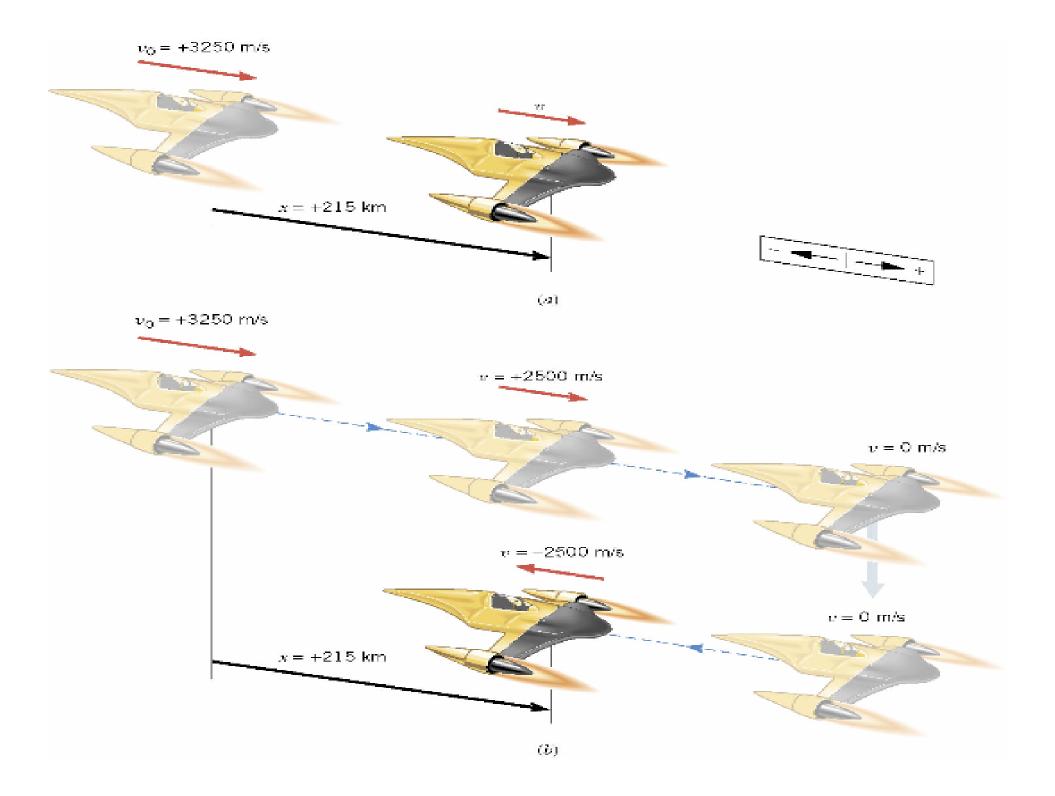
X	а	V	V _o	t
+215000 m	-10.0 m/s ²	?	+3250 m/s	

$$v^2 = v_o^2 + 2ax$$
 Solve for $v = \pm \sqrt{v_o^2 + 2ax}$

$$v = \pm \sqrt{(3250 \text{ m/s})^2 + 2(-10.0 \text{ m/s}^2)(215000 \text{ m})}$$

 $=\pm 2500 \, \text{m/s}$

What do two opposite signs mean?



Example

Suppose you want to design an air-bag system that can protect the driver in a headon collision at a speed 100km/hr (~60miles/hr). Estimate how fast the air-bag must inflate to effectively protect the driver. Assume the car crumples upon impact over a distance of about 1m. How does the use of a seat belt help the driver?

How long does it take for the car to come to a full stop? \square As long as it takes for it to crumple. The initial speed of the car is $v_{xi} = 100 km / h = \frac{100000m}{3600s} = 28m / s$ We also know that $v_{xf} = 0m / s$ and $\chi_f - \chi_i = 1m$ Using the kinematic formula $v_{xf}^2 = v_{xi}^2 + 2a_x(x_f - x_i)$ The acceleration is $a_x = \frac{v_{xf}^2 - v_{xi}^2}{2(x_f - x_i)} = \frac{0 - (28m/s)^2}{2 \times 1m} = -390m/s^2$ Thus the time for air-bag to deploy is $t = \frac{v_{xf} - v_{xi}}{a} = \frac{0 - 28m/s}{-390m/s^2} = 0.07s$

Thursday, May 29, 2008

