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PHYS 1443 – Section 001 
Lecture #15 

Thursday, June 30, 2011 
Dr. Jaehoon Yu 

•  Relationship Between Angular and 
Linear quantities 

•  Torque and Vector Product 
•  Moment of Inertia 
•  Calculation of Moment of Inertia 
•  Torque and Angular Acceleration 

Today’s homework is homework #8, due 10pm, Monday, July4!! 
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Reminder: Extra-Credit Special Project 
•  Derive the formula for the final velocity of two objects which 

underwent an elastic collision as a function of known 
quantities m1, m2, v01 and v02 in page 8 of lecture note on 
Tuesday, June 28, in a far greater detail than in the note. 
–  20 points extra credit 

•  Show mathematically what happens to the final velocities if 
m1=m2 and explain in detail in words the resulting motion. 
–  5 point extra credit 

•  NO Credit will be given if the process is too close to the note! 
•  Due: Start of the class Tuesday, July 5  



Extra Credit: 2-D Collisions 
• Proton #1 with a speed 5.0x106 m/s collides elastically with 
proton #2 initially at rest.  After the collision, proton #1 
moves at an angle of 37o to the horizontal axis and proton 
#2 deflects at an angle φ to the same axis.  Find the final 
speeds of the two protons and the scattering angle of proton 
#2, φ.  This must be done in much more detail than the book 
or on page 13 of lecture note on Tuesday, June 28. 
• 10 points 
• Due beginning of the class Wednesday, July 6 
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! f =

Rotational Kinematics 
The first type of motion we have learned in linear kinematics was under 
the constant acceleration.  We will learn about the rotational motion under 
constant angular acceleration, because these are the simplest motions in 
both cases. 

Just like the case in linear motion, one can obtain 
Angular velocity under constant 
angular acceleration: 

Angular displacement under 
constant angular acceleration: 

! f =

One can also obtain  ! f
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Ex. 10 – 4: Rotational Kinematics 
A wheel rotates with a constant angular acceleration of 3.50 rad/s2.  If 
the angular speed of the wheel is 2.00 rad/s at ti=0, a) through what 
angle does the wheel rotate in 2.00s? 

Using the angular displacement formula in the previous slide, one gets 
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Example for Rotational Kinematics cnt’d 
What is the angular speed at t=2.00s? 

Using the angular speed and acceleration relationship 

Find the angle through which the wheel rotates between t=2.00s and 
t=3.00s. 

Using the angular kinematic formula 

At t=2.00s 

At t=3.00s 

Angular 
displacement 
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Relationship Between Angular and Linear Quantities 
What do we know about a rigid object that rotates 

about a fixed axis of rotation? 

When a point rotates, it has both the linear and angular  
components in its motion.   
What is the linear component of the motion in the figure? 

Every particle (or masslet) in the object moves on a 
circle centered at the same axis of rotation. 

Linear velocity along the tangential direction. 
How do we related this linear component of the motion 
with angular component? 

The arc-length is  So the tangential speed v is 

What does this relationship tell you 
about the tangential speed of the points 
in the object and their angular speed?: 

Although every particle in the object has the same 
angular speed, its tangential speed differs and is 
proportional to its distance from the axis of rotation. 
The farther away the particle is from the center of 
rotation, the higher the tangential speed. 

The direction 
of ω follows 
the right-
hand rule. 
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Is the lion faster than the horse? 
A rotating carousel has one child sitting on a horse near the outer edge and 
another child on a lion halfway out from the center. (a) Which child has the 
greater linear speed? (b) Which child has the greater angular speed? 

(a)  Linear speed is the distance traveled 
divided by the time interval.  So the child 
sitting at the outer edge travels more 
distance within the given time than the child 
sitting closer to the center.  Thus, the horse 
is faster than the lion. 

(b) Angular speed is the angle traveled divided by the time interval.  The 
angle both the children travel in the given time interval is the same.  
Thus, both the horse and the lion have the same angular speed. 
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How about the acceleration? 

Two 
How many different linear acceleration components do 
you see in a circular motion and what are they? 

Total linear acceleration is 

Since the tangential speed v is 

What does this 
relationship tell you? 

Although every particle in the object has the same angular 
acceleration, its tangential acceleration differs proportional to its 
distance from the axis of rotation. 

Tangential, at, and the radial acceleration, ar. 

The magnitude of tangential 
acceleration at is 

The radial or centripetal acceleration ar is 

What does 
this tell you? 

The father away the particle is from the rotation axis, the more radial 
acceleration it receives.  In other words, it receives more centripetal force. 

=
v2

r =
rω( )2
r

= rω 2

= at
2 + ar

2 = rα( )2 + rω 2( )2 = r α 2 +ω 4
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Example 
(a) What is the linear speed of a child seated 1.2m from the center of a 
steadily rotating merry-go-around that makes one complete revolution 
in 4.0s? (b) What is her total linear acceleration? 

First, figure out what the angular 
speed of the merry-go-around is. 
Using the formula for linear speed 

Since the angular speed is constant, there is no angular acceleration. 

Tangential acceleration is 

Radial acceleration is 

Thus the total 
acceleration is 

  = 1.2m ×1.6rad / s = 1.9m / s

  = 1.2m × 0rad / s2 = 0m / s2

  = rω 2
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Example for Rotational Motion 
Audio information on compact discs are transmitted digitally through the readout system 
consisting of laser and lenses.   The digital information on the disc are stored by the pits 
and flat areas on the track.   Since the speed of readout system is constant, it reads out 
the same number of pits and flats in the same time interval.  In other words, the linear 
speed is the same no matter which track is played.  a) Assuming the linear speed is 1.3 
m/s, find the angular speed of the disc in revolutions per minute when the inner most 
(r=23mm) and outer most tracks (r=58mm) are read. 

Using the relationship between angular and tangential speed 
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b) The maximum playing time of a standard music CD is 74 minutes and 
33 seconds.  How many revolutions does the disk make during that time? 

c) What is the total length of the track past through the readout mechanism? 

d) What is the angular acceleration of the CD over the 4473s time interval, 
assuming constant a? 
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Torque 
Torque is the tendency of a force to rotate an object about an axis.  
Torque, τ, is a vector quantity. 

Magnitude of torque is defined as the product of the force 
exerted on the object to rotate it and the moment arm. 

F 
φ	



d 

The line 
of Action 

Consider an object pivoting about the point P by 
the force F being exerted at a distance r from P.  

P 

r 

Moment arm 

The line that extends out of the tail of the force 
vector is called the line of action.  
The perpendicular distance from the pivoting point 
P to the line of action is called the moment arm. 

When there are more than one force being exerted on certain 
points of the object, one can sum up the torque generated by each 
force vectorially.  The convention for sign of the torque is positive 
if rotation is in counter-clockwise and negative if clockwise.  

d2 

F2 
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R1 

Ex. 10 – 7: Torque 
A one piece cylinder is shaped as in the figure with core section protruding from the larger 
drum.  The cylinder is free to rotate around the central axis shown in the picture.   A rope 
wrapped around the drum whose radius is R1 exerts force F1 to the right on the cylinder, 
and another force exerts F2 on the core whose radius is R2 downward on the cylinder.  A) 
What is the net torque acting on the cylinder about the rotation axis? 

The torque due to F1 

Suppose F1=5.0 N, R1=1.0 m, F2= 15.0 N, and R2=0.50 m.  What is the net torque 
about the rotation axis and which way does the cylinder rotate from the rest? 

R2 

and due to F2 

Using the 
above result 

So the total torque acting on 
the system by the forces is 

The cylinder rotates in 
counter-clockwise. 
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x 

y 

z 

O 

Torque and Vector Product 

The magnitude of torque given to the disk by the force F is 

Let’s consider a disk fixed onto the origin O and 
the force F exerts on the point p. What happens? 
The disk will start rotating counter clockwise about the Z axis 

The above operation is called the 
Vector product or Cross product 

F θ 

τ=rxF	



r p 

But torque is a vector quantity, what is the direction? 
How is torque expressed mathematically?  

What is the direction? The direction of the torque follows the right-hand rule!! 

What is the result of a vector product? 
Another vector 

What is another vector operation we’ve learned? 

Scalar product   C ≡ A

⋅ B

=

Result? A scalar 

  
C


=
  
A

× B


=
  
A


  
B


   
A


B


cosθ
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Properties of Vector Product 

 

d A

× B
( )

dt

Vector Product is Non-commutative What does this mean? 
If the order of operation changes the result changes  A


× B

≠ B

× A


 A

× B

= −B

× A
Following the right-hand rule, the direction changes 

Vector Product of two parallel vectors is 0. 

 
C


= A

× B


 A

× A

= 0Thus, 

If two vectors are perpendicular to each other 

 
A

× B


Vector product follows distribution law 

 
A

× B

+ C
( )

The derivative of a Vector product with respect to a scalar variable is  

 
= A

B

sinθ

 
= A

B

sin0 = 0

 
= A

B

sinθ

 
= A

B

sin90

 
= A

B


= AB

 = A

× B

+ A

× C


 
=
dA


dt
× B

+ A

×
dB


dt
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More Properties of Vector Product 
The relationship between 
unit vectors,   i


,  j

 and k

  i

× i

= j

× j

= k

× k


 A

× B

=

Vector product of two vectors can be expressed in the following determinant form  

 i

× j

 = − j

× i

 = k


 j

× k

 = −k

× j

 = i


 k

× i

 = −i

× k

 = j


 

i


j


k


Ax Ay Az
Bx By Bz  

= i
 Ay Az
By Bz  

− j
 Ax Az

Bx Bz
 

+k
 Ax Ay

Bx By

 
= AyBz − AzBy( )  i − AxBz − AzBx( ) j + AxBy − AyBx( )k
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Moment of Inertia  
Rotational Inertia: 

What are the dimension and 
unit of Moment of Inertia? 

 I ≡

kg ⋅m2ML2⎡⎣ ⎤⎦

Measure of resistance of an object to 
changes in its rotational motion.  
Equivalent to mass in linear motion. 

Determining Moment of Inertia is extremely important for 
computing equilibrium of a rigid body, such as a building. 

For a group 
of particles 

For a rigid 
body   

miri
2

i
∑

Dependent on the axis of rotation!!! 
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Example for Moment of Inertia 
In a system of four small spheres as shown in the figure, assuming the radii are negligible 
and the rods connecting the particles are massless, compute the moment of inertia and 
the rotational kinetic energy when the system rotates about the y-axis at angular speed ω. 

Since the rotation is about y axis, the moment of 
inertia about y axis, Iy, is 

Thus, the rotational kinetic energy is  

Find the moment of inertia and rotational kinetic energy when the system rotates on 
the x-y plane about the z-axis that goes through the origin O. 

x 

y 

This is because the rotation is done about y axis, 
and the radii of the spheres are negligible. Why are some 0s? 

M M l l 

m 

m 

b 

b 
O   = Ml2 = 2Ml2

=
1
2
2Ml2( )ω 2

  +Ml2
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Calculation of Moments of Inertia 
Moments of inertia for large objects can be computed, if we assume 
the object consists of small volume elements with mass, Δmi. 

It is sometimes easier to compute moments of inertia in terms 
of volume of the elements rather than their mass 

Using the volume density, ρ, replace 
dm in the above equation with dV. 

The moment of inertia for the large rigid object is 

How can we do this? 

I = lim
Δmi→0

ri
2Δmi

i
∑

ρ =
dm
dV

The moments of 
inertia becomes I = ρr2 dV∫

Example: Find the moment of inertia of a uniform hoop of mass M and radius R 
about an axis perpendicular to the plane of the hoop and passing through its center. 

x 

y 

R O 

dm The moment 
of inertia is I = r2 dm∫

What do you notice 
from this result? 

The moment of inertia for this 
object is the same as that of a 
point of mass M at the distance R. 

= R2 dm∫ = MR2

dm = ρdV
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Ex.10 – 11 Rigid Body Moment of Inertia 
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis perpendicular to the rod and passing through its center of mass. 

The line density of the rod is   

What is the moment of inertia 
when the rotational axis is at 
one end of the rod. 

x 

y 

L 
x 

dx 

λ =
M
L

so the masslet is   dm

The moment 
of inertia is   

I = r2 dm∫

Will this be the same as the above.  
Why or why not? 

Since the moment of inertia is resistance to motion, it makes perfect sense 
for it to be harder to move when it is rotating about the axis at one end. 

= λdx = M
L
dx

= r2 dm∫ =
x2M
L−L /2

L /2

∫ dx =
M
L

1
3
x3⎡

⎣⎢
⎤
⎦⎥−L /2

L /2

=
M
3L

L
2

⎛
⎝⎜

⎞
⎠⎟
3

− −
L
2

⎛
⎝⎜

⎞
⎠⎟
3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
M
3L

L3

4
⎛
⎝⎜

⎞
⎠⎟
=
ML2

12

=
x2M
L0

L

∫ dx=
M
L

1
3
x3⎡

⎣⎢
⎤
⎦⎥0

L

=
M
3L

L( )3 − 0⎡⎣ ⎤⎦=
M
3L

L3( ) =
ML2

3
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x 

y 

(x,y) 

xCM 

(xCM,yCM) 

y CM
 

CM 

Parallel Axis Theorem 
Moments of inertia for highly symmetric object is easy to compute if the 
rotational axis is the same as the axis of symmetry.  However if the axis of 
rotation does not coincide with axis of symmetry, the calculation can still be 
done in a simple manner using parallel-axis theorem. I = ICM + MD2

y 

x 

r 

Moment of inertia is defined as I = r2 dm∫
Since x and y are 

x’ 

y’ 

x = xCM + x '
One can substitute x and y in Eq. 1 to obtain 
I = xCM + x '( )2 + yCM + y '( )2⎡

⎣
⎤
⎦dm∫

Since the x’ and y’ are the 
distance from CM, by definition 

D 

Therefore, the parallel-axis theorem 
= MD2 + ICM

What does this 
theorem tell you? 

Moment of inertia of any object about any arbitrary axis are the same as 
the sum of moment of inertia for a rotation about the CM and that of 
the CM about the rotation axis. 

  
= x2 + y2( )dm∫    (1)

y = yCM + y '

= xCM
2 + yCM

2( ) dm∫ + 2xCM x 'dm +∫ 2yCM y 'dm +∫ x '2+ y '2( )∫ dm

I = xCM
2 + yCM

2( ) dm∫ + x '2+ y '2( )∫ dm
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Example for Parallel Axis Theorem 
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis that goes through one end of the rod, using parallel-axis theorem. 

The line density of the rod is   

Using the parallel axis theorem 

so the masslet is   

The moment of 
inertia about 
the CM  

ICM

I = ICM + D2M

The result is the same as using the definition of moment of inertia. 
Parallel-axis theorem is useful to compute moment of inertia of a rotation of a rigid 
object with complicated shape about an arbitrary axis 

x 

y 

L 
x 

dx CM 

=
ML2

12
+

L
2

⎛
⎝⎜

⎞
⎠⎟
2

M

= r2 dm∫ =
x2M
L−L /2

L /2

∫ dx=
M
L

1
3
x3⎡

⎣⎢
⎤
⎦⎥−L /2

L /2

=
M
3L

L
2

⎛
⎝⎜

⎞
⎠⎟
3

− −
L
2

⎛
⎝⎜

⎞
⎠⎟
3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
M
3L

L3

4
⎛
⎝⎜

⎞
⎠⎟
=
ML2

12

=
ML2

12
+
ML2

4
=
ML2

3
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Check out 
Figure 10 – 20  
for moment of 

inertia for 
various shaped 

objects 


