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PHYS 1443 – Section 001 
Lecture #16 

Wednesday, July 6, 2011 
Dr. Jaehoon Yu 

•  Calculation of Moment of Inertia 
•  Torque and Angular Acceleration 
•  Rolling Motion & Rotational Kinetic Energy 
•  Work, Power and Energy in Rotation 
•  Angular Momentum & Its Conservation 
•  Equilibrium 

The final homework is homework #9, due 10pm, Saturday, July 9!! 
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Announcements 
•  Quiz #3 results 

–  Class average: 20.1/35 
•  Equivalent to 59.7/100 
•  Extremely consistent: 62.5 and 61.4 

–  Top score: 33/35 

•  Quiz #4 tomorrow, Thursday, July 7 
–  Beginning of the class 
–  Covers CH10.1 through what we learn today (CH12.2?) 

•  Please to not forget the planetarium special credit sheet 
submission tomorrow 

•  Final Comprehensive Exam 
–  8 – 10am, Monday, July 11 in SH103 
–  Covers CH1.1 through what we learn Thursday, July 7 
–  Mixture of multiple choice and free response problems 

•  Bring your two special projects during the intermission 
PHYS 1443-001, Summer 2011 Dr. 

Jaehoon Yu 
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Moment of Inertia  
Rotational Inertia: 

What are the dimension and 
unit of Moment of Inertia? 

 I ≡

kg ⋅m2ML2⎡⎣ ⎤⎦

Measure of resistance of an object to 
changes in its rotational motion.  
Equivalent to mass in linear motion. 

Determining Moment of Inertia is extremely important for 
computing equilibrium of a rigid body, such as a building. 

For a group 
of particles 

For a rigid 
body   

miri
2

i
∑

Dependent on the axis of rotation!!! 
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Calculation of Moments of Inertia 
Moments of inertia for large objects can be computed, if we assume 
the object consists of small volume elements with mass, Δmi. 

It is sometimes easier to compute moments of inertia in terms 
of volume of the objects rather than their mass 

Using the volume density, ρ, replace 
dm in the above equation with dV. 

The moment of inertia for the large rigid object is 

How can we do this? 

I = lim
Δmi→0

ri
2Δmi

i
∑

ρ =
dm
dV

The moments of 
inertia becomes I = ρr2 dV∫

Example: Find the moment of inertia of a uniform hoop of mass M and radius R 
about an axis perpendicular to the plane of the hoop and passing through its center. 

x 

y 

R O 

dm The moment 
of inertia is I = r2 dm∫

What do you notice 
from this result? 

The moment of inertia for this 
object is the same as that of a 
point of mass M at the distance R. 

= R2 dm∫ = MR2

dm = ρdV
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Ex.10 – 11 Rigid Body Moment of Inertia 
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis perpendicular to the rod and passing through its center of mass. 

The line density of the rod is   

What is the moment of inertia 
when the rotational axis is at 
one end of the rod. 

x 

y 

L 
x 

dx 

λ =
M
L

so the masslet is   dm

The moment 
of inertia is   

I = r2 dm∫

Will this be the same as the above.  
Why or why not? 

Since the moment of inertia is resistance to motion, it makes perfect sense 
for it to be harder to move when it is rotating about the axis at one end. 

= λdx = M
L
dx

= r2 dm∫ =
x2M
L−L /2

L /2

∫ dx =
M
L

1
3
x3⎡

⎣⎢
⎤
⎦⎥−L /2

L /2

=
M
3L

L
2

⎛
⎝⎜

⎞
⎠⎟
3

− −
L
2

⎛
⎝⎜

⎞
⎠⎟
3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
M
3L

L3

4
⎛
⎝⎜

⎞
⎠⎟
=
ML2

12

=
x2M
L0

L

∫ dx=
M
L

1
3
x3⎡

⎣⎢
⎤
⎦⎥0

L

=
M
3L

L( )3 − 0⎡⎣ ⎤⎦=
M
3L

L3( ) =
ML2

3
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Check out 
Figure 10 – 20  
for moment of 

inertia for 
various shaped 

objects 
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Torque & Angular Acceleration 
Let’s consider a point object with mass m rotating on a circle. 

What does this mean? 

The tangential force Ft and the radial force Fr 

The tangential force Ft is 

What do you see from the above relationship? 

m 
r 

Ft 

Fr 
What forces do you see in this motion? 

 Ft = mat

The torque due to tangential force Ft is  τ = Ftr
 τ = Iα

Torque acting on a particle is proportional to the angular acceleration. 

What law do you see from this relationship? Analogs to Newton’s 2nd law of motion in rotation. 

How about a rigid object? 

r 

dFt 

δm 

O 

The external tangential force δFt is  δFt =

  
τ = lim

δτ→0
δτ∑ = dτ∫ =

The torque due to tangential force Ft is 
The total torque is 

What is the contribution due 
to radial force and why? 

Contribution from radial force is 0, because its 
line of action passes through the pivoting 
point, making the moment arm 0. 

 = matr   = mr 2α

  
r 2δm( )α

  
α lim

δm→0
r 2δm∑ = α r 2 dm∫ =
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Rolling Motion of a Rigid Body 
What is a rolling motion? 

To simplify the discussion, let’s 
make a few assumptions 

Let’s consider a cylinder rolling on a flat surface, without slipping.  

A more generalized case of a motion where the 
rotational axis moves together with an object 

Under what condition does this “Pure Rolling” happen? 

The total linear distance the CM of the cylinder moved is 

Thus the linear 
speed of the CM is 

A rotational motion about a moving axis 

1.  Limit our discussion on very symmetric 
objects, such as cylinders, spheres, etc 

2.  The object rolls on a flat surface 

R θ	

 s 

s=Rθ The condition for a “Pure Rolling motion” 
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More Rolling Motion of a Rigid Body 

As we learned in rotational motion, all points in a rigid body 
moves at the same angular speed but at different linear speeds. 

At any given time, the point that comes to P has 0 linear 
speed while the point at P’ has twice the speed of CM 

The magnitude of the linear acceleration of the CM is 

A rolling motion can be interpreted as the sum of Translation and Rotation 

Why?? P 

P’ 

CM 
vCM 

2vCM 

CM is moving at  the same speed at all times. 

P 

P’ 

CM 
vCM 

vCM 

vCM 

+ 
P 

P’ 

CM 

v=Rω 

v=0 

v=Rω 

= 
P 

P’ 

CM 

2vCM 

vCM 
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Rotational Kinetic Energy 
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is?  

Since a rigid body is a collection of masslets, the total kinetic energy of the 
rigid object is 

Since moment of Inertia, I, is defined as 

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is 

ri 
mi 

θ	



O x 

y vi 

The above expression is simplified as 

=
1
2

miri
2ω 2

i
∑
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Kinetic Energy of a Rolling Sphere 

Since vCM=Rω 

Let’s consider a sphere with radius R 
rolling down the hill without slipping. 

R 

h 
θ 

vCM 

ω	



Since the kinetic energy at the bottom of the hill must 
be equal to the potential energy at the top of the hill 

What is the speed of the 
CM in terms of known 
quantities and how do you 
find this out? 

KE = KERotation + KELinear =
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Ex. 10 – 16: Rolling Kinetic Energy 
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.  Solve this problem 
using Newton’s second law, the dynamic method. 

Gravitational Force, 

Since the forces Mg and n go through the CM, their moment arm is 0 
and do not contribute to torque, while the static friction f causes torque 

M 
h 

θ 

We know that   

What are the forces involved in this motion? 

Mg 

f 

Newton’s second law applied to the CM gives 
Frictional Force, Normal Force 

n 

We 
obtain  

 Substituting f in 
dynamic equations 

= fR
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Work, Power, and Energy in Rotation 
Let’s consider the motion of a rigid body with a single external 
force F exerting on the point P, moving the object by Δs. 
The work done by the force F as the object rotates through 
the infinitesimal distance Δs=rΔθ is  

What is Fsinϕ? The tangential component of the force F. 

ΔW

Since the magnitude of torque is rFsinϕ, 

F 
φ	



O 
r Δθ	


Δs 

What is the work done by 
radial component Fcosϕ? 

Zero, because it is perpendicular to the 
displacement. 
ΔW

The rate of work, or power, becomes 
How was the power 
defined in linear motion? 

The rotational work done by an external force 
equals the change in rotational Kinetic energy.  

The work put in by the external force then 

  = F

⋅ Δs


= τΔθ

=
ΔW
Δt   

=
τ  Δθ
Δt

= I Δω
Δt

⎛
⎝⎜

⎞
⎠⎟

ΔW = Iω dω
ω i

ω f∫

= rF sinφ( )Δθ

= F sinφ( )rΔθ

 τΔθ∑ = IωΔω

=
1
2
Iω f

2 −
1
2
Iω i

2

Work-kinetic Energy Theorem 
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Angular Momentum of a Particle 
If you grab onto a pole while running, your body will rotate about the pole, gaining 
angular momentum.   We’ve used the linear momentum to solve physical problems 
with linear motions, the angular momentum will do the same for rotational motions. 

Let’s consider a point-like object ( particle) with mass m located 
at the vector location r and moving with linear velocity v 

  L
!"
! r
"
" p
!"The angular momentum L of this 

particle relative to the origin O is  

What do you learn from this? If the direction of linear velocity points to the origin of 
rotation, the particle does not have any angular momentum. 

What is the unit and dimension of angular momentum?  

Note that L depends on origin O.  Why?  Because r changes 
The direction of L is +z. What else do you learn?  

Since p is mv, the magnitude of L becomes 

If the linear velocity is perpendicular to position vector, the 
particle moves exactly the same way as a point on a rim. 

z 

x 

y 

= mr2 sinφv r = Iω
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Example for Rigid Body Angular Momentum 
A rigid rod of mass M and length l is pivoted without friction at its center.  Two particles of mass 
m1 and m2 are attached to either end of the rod.  The combination rotates on a vertical plane 
with an angular speed of ω. Find an expression for the magnitude of the angular momentum. 

The moment of inertia of this system is 

 First compute the 
net external torque 

m1 g 

x 

y 

O 

l 

m1 

m2 

θ	

 m2 g 

If m1 = m2, no angular 
momentum because the net 
torque is 0.  
If θ=+/-π/2, at equilibrium 
so no angular momentum.	



Find an expression for the magnitude of the angular acceleration of the 
system when the rod makes an angle θ with the horizon. 

Thus α 
becomes 
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Conservation of Angular Momentum 
Remember under what condition the linear momentum is conserved? 

Linear momentum is conserved when the net external force is 0. 

Three important conservation laws 
for isolated system that does not get 
affected by external forces 

Angular momentum of the system before and 
after a certain change is the same. 

By the same token, the angular momentum of a system 
is constant in both magnitude and direction, if the 
resultant external torque acting on the system is 0.  

What does this mean? 

Mechanical Energy 

Linear Momentum 

Angular Momentum 
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Ex. 11 – 3 Neutron Star 
 A star rotates with a period of 30 days about an axis through its center.  After the star 
undergoes a supernova explosion, the stellar core, which had a radius of 1.0x104km, collapses 
into a neutron star of radius 3.0km.  Determine the period of rotation of the neutron star.   

What is your guess about the answer? The period will be significantly shorter, 
because its radius got smaller. 

Let’s make some assumptions: 1.  There is no external torque acting on it 
2.  The shape remains spherical 
3.  Its mass remains constant 

The angular speed of the star with the period T is 

Using angular momentum 
conservation 

Thus 
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Similarity Between Linear and Rotational Motions 
All physical quantities in linear and rotational motions show striking similarity. 

Quantities Linear Rotational 
Mass Mass Moment of Inertia 

Length of motion Distance Angle     (Radian) 
Speed 

Acceleration 
Force Force Torque 
Work Work Work 
Power 

Momentum 
Kinetic Energy Kinetic Rotational 
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Conditions for Equilibrium 
What do you think the term “An object is at its equilibrium” means? 

The object is either at rest (Static Equilibrium) or its center of mass 
is moving at a constant velocity (Dynamic Equilibrium).  

Is this it?    

When do you think an object is at its equilibrium? 

Translational Equilibrium: Equilibrium in linear motion  

The above condition is sufficient for a point-like object to be at its 
translational equilibrium.  For an object with size, however, this is 
not sufficient.   One more condition is needed.  What is it?  

Let’s consider two forces equal in magnitude but in opposite direction acting 
on a rigid object as shown in the figure.   What do you think will happen? 

CM 
d 

d 

F 

-F 

The object will rotate about the CM. The net torque 
acting on the object about any axis must be 0.  

For an object to be at its static equilibrium, the object should not 
have linear or angular speed.  
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More on Conditions for Equilibrium 
To simplify the problem, we will only deal with forces acting on x-y plane, giving torque 
only along z-axis.   What do you think the conditions for equilibrium be in this case?  

The six possible equations from the two vector equations turns to three equations. 

What happens if there are many forces exerting on an object? 

O 
F3 

r5 O’ r’ 

If an object is at its translational static equilibrium, and 
if the net torque acting on the object is 0 about one 
axis, the net torque must be 0 about any arbitrary axis. 
Why is this true? 

AND 
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How do we solve equilibrium problems? 
1.  Identify all the forces and their directions and locations 
2.  Draw a free-body diagram with forces indicated on it with 

their directions and locations properly noted 
3.  Write down force equation for each x and y component with 

proper signs 
4.  Select a rotational axis for torque calculations  Selecting 

the axis such that the torque of one of the unknown forces 
become 0 makes the problem easier to solve 

5.  Write down the torque equation with proper signs 
6.  Solve the equations for unknown quantities  
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Ex. 12 – 3: Seesaw Balancing 
A uniform 40.0 N board supports the father and the daughter each weighing 800 N and 
350 N, respectively, and is not moving.   If the support (or fulcrum) is under the center of 
gravity of the board, and the father is 1.00 m from CoG, what is the magnitude of the 
normal force n exerted on the board by the support? 

Since there is no linear motion, this system 
is in its translational equilibrium F D 

n 
1m x 

Therefore the magnitude of the normal force  

Determine where the child should sit to balance the system. 
The net torque about the fulcrum 
by the three forces are  
Therefore to balance the system 
the daughter must sit 

MBg MDg MFg 
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Seesaw Example Cont’d  
Determine the position of the child to balance the 
system for different position of axis of rotation. 

Since the normal force is  

The net torque about the axis of 
rotation by all the forces are  

Therefore 

The net torque can 
be rewritten  

What do we learn? 

No matter where the 
rotation axis is, net effect of 
the torque is identical. 

F D 
n 

MBg MFg MFg 

1m x 

x/2	



Rotational axis 
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Ex. 12.4 for Mechanical Equilibrium 
A person holds a 50.0N sphere in his hand.   The forearm is horizontal.  The biceps 
muscle is attached 3.00 cm from the joint, and the sphere is 35.0cm from the joint.  Find 
the upward force exerted by the biceps on the forearm and the downward force exerted 
by the upper arm on the forearm and acting at the joint.  Neglect the weight of forearm. 

Since the system is in equilibrium, from 
the translational equilibrium condition 

From the rotational equilibrium condition 

O 

FB 

FU mg 

d 

l 

Thus, the force exerted by 
the biceps muscle is 

Force exerted by the upper arm is 
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Example 12 – 6  
A 5.0 m long ladder leans against a wall at a point 4.0m above the ground.  The ladder is 
uniform and has mass 12.0kg.  Assuming the wall is frictionless (but ground is not), 
determine the forces exerted on the ladder by the ground and the wall.   

FBD 

First the translational equilibrium, 
using components 

Thus, the y component of the force by the ground is 

mg 

FW 

FGx 

FGy 
O 

The length x0 is, from Pythagorian theorem 



Wednesday, July 6, 2011 PHYS 1443-001, Summer 2011 Dr. 
Jaehoon Yu 

26 

Example 12 – 6 cont’d 
From the rotational equilibrium 

Thus the force exerted on the ladder by the wall is 

Thus the force exerted on the ladder by the ground is 

The x component of the force by the ground is 

Solve for FGx 

The angle between the 
ground force to the floor 


