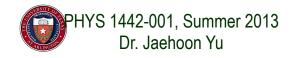
PHYS 1442 – Section 001 Lecture #9

Tuesday, June 18, 2013 Dr. **Jae**hoon **Yu**

- Chapter 19
 - Kirchhoff's Rules
 - EMFs in Series and Parallel
 - Capacitors in Series and Parallel
 - RC Circuit
- Chapter 20
 - Magnets and Magnetic Field
 - Electric Current and Magnetism
 - Magnetic Forces on Electric Current

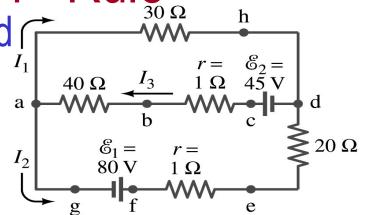
Today's homework is homework #5, due 11pm, Monday, June 24!! ¹


Announcements

- Quiz results
 - Class average: 58.1/95
 - Equivalent to 61.2/100
 - Previous result 51.7/100
 - Top score: 87/95
- Mid-term exam
 - Tomorrow, Wednesday, June 19
 - Comprehensive exam
 - Covers CH16.1 what we finish today (CH20.1?) plus Appendices A1 A8
- Mid-term grade discussion
 - Between 2 3:30 pm this Friday, June 21
 - In Dr. Yu's office (CPB342)

Special Project #3

- Make a list of the power consumption and the resistance of all electric and electronic devices at your home and compiled them in a table. (5 points total for the first 10 items and 0.25 points each additional item.)
- Estimate the cost of electricity for each of the items on the table using your own electric cost per kWh (if you don't find your own, use \$0.12/kWh) and put them in the relevant column. (2 points total for the first 10 items and 0.1 points each additional items)
- Estimate the total amount of energy in Joules and the total electricity cost per day, per month and per year for your home. (6 points)
- Due: Beginning of the class Thursday, June 20
 - Print the entire width of the table to be contained in one page!!

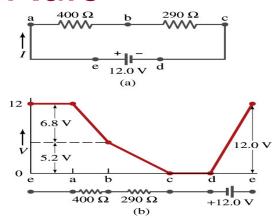


Spread Sheet

Item Name	Rated power (W)	er of devices	Numbe r of Hours per day	Power Consumpt	Energy Cost per kWh (cents)	Daily Energy Consump tion (J).	Daily Energy Cost (\$)	Monthly Energy Consump tion (J)	Monthly Energy Cost (S)	Yearly Energy Consump tion (J)	Yearly Energy Cost (\$)
Light Bulbs	30	4									
	40	6									
	60	15									
Heaters	1000	2									
	1500	1									
	2000	1									
Fans											
Air Conditioners											
Fridgers, Freezers											
Computers (desktop, laptop, ipad)											
Game consoles											
Total				0		0	• 0	0	0	0	• 0

Kirchhoff's Rules – 1st Rule

- Some circuits are very complicated (to analyze using the simple combinations of resisters
 - G. R. Kirchhoff devised two rules to deal with complicated circuits.



- Kirchhoff's rules are based on conservation of charge and energy
 - Kirchhoff's 1st rule: Junction rule, charge conservation.
 - At any junction point, the sum of all currents entering the junction must equal to the sum of all currents leaving the junction.
 - In other words, what goes in must come out.
 - At junction *a* in the figure, I_3 comes into the junction while I_1 and I_2 leaves: $I_3 = I_1 + I_2$

Kirchhoff's Rules – 2nd Rule

- Kirchoff's 2nd rule: Loop rule, uses conservation of energy.
 - The sum of the changes in potential around any closed path of a circuit must be zero.

- The current in the circuit in the figure is I=12/690=0.017A.
 - Point *e* is the highest potential point while point d is the lowest potential.
 - When the test charge starts at *e* and returns to *e*, the total potential change is 0.
 - Between point *e* and *a*, no potential change since there is no source of potential or any resistance to drop potential.
 - Between *a* and *b*, there is a 400 Ω resistance, causing IR=0.017*400 = 6.8V drop.
 - Between 6 and c, there is a 290 Ω resistance, causing IR=0.017*290 =5.2V drop.
 - Since these are voltage drops, we use negative sign for these, -6.8V and -5.2V.
 - No change between c and d while from d to e there is +12V change.
 - Thus the total change of the voltage through the loop is: -6.8V-5.2V+12V=0V.


Using Kirchhoff's Rules

- 1. Determine the flow of currents at the junctions.
 - It does not matter which direction of the current you choose.
 - If the value of the current after completing the calculations are negative, you just flip the direction of the current flow.
- 2. Write down the current equation based on Kirchhoff's 1st rule at various junctions.
 - Be sure to see if any of them are the same.
- 3. Choose independent closed loops in the circuit
- 4. Write down the potential in each interval of the junctions, keeping the signs properly.
- 5. Write down the potential equations for each loop.
- 6. Solve the equations for unknowns.

Example 19 – 8

Using Kirchhoff's rules. Calculate the currents I_1 , I_2 and I_3 in each of the branches of the circuit in the figure.

The directions of the current through the circuit is not known a *priori* but since the current tends to move away from the positive terminal of a battery, we arbitrarily choose the direction of the currents as shown.

We have three unknowns so we need three equations.

Using Kirchhoff's junction rule at point *a*, we obtain $I_3 = I_1 + I_2$

This is the same for junction d as well, so no additional information. Now the second rule on the loop *ahdcba*.

 $V_{ah} = -I_1 30$ $V_{hd} = 0$ $V_{dc} = +45$ $V_{cb} = -I_3 \cdot 1$ $V_{ba} = -40I_3$ The total voltage change in loop *ahdcba* is.

$$V_{ahdcba} = -30I_1 + 45 - I_3 - 40I_3 = 45 - 30I_1 - 41I_3 = 0$$

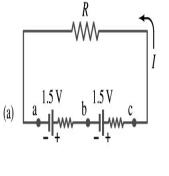
Example 19 – 8, cnťd

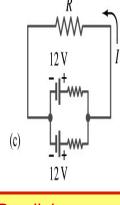
Now the second rule on the other loop agfedc6a. $V_{ag} = 0 \quad V_{gf} = +80 \quad V_{fe} = -I_2 \cdot 1 \quad V_{ed} = -I_2 20$ $V_{dc} = +45 \quad V_{cb} = -I_3 \cdot 1 \quad V_{ba} = -40I_3$ The total voltage change in loop agfedc6a is. $V_{agfedcba} = -21I_2 + 125 - 41I_3 = 0$ So the three equations become $I_3 = I_1 + I_2$ $45 - 30I_1 - 41I_3 = 0$ $125 - 21I_2 - 41I_3 = 0$

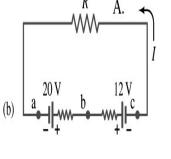
We can obtain the three current by solving these equations for I_1 , I_2 and I_3 .

 30Ω

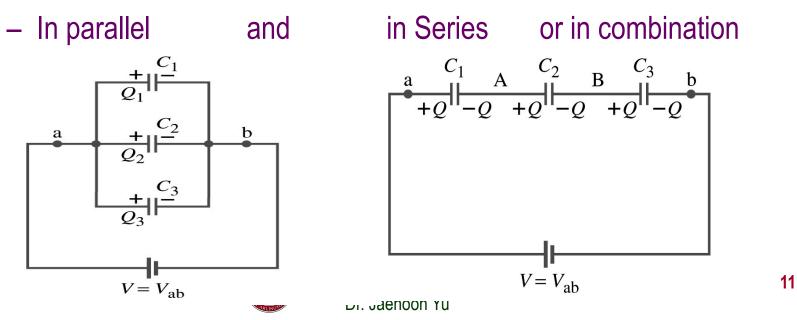
EMF's in Series and Parallel: Charging a Battery


- When two or more sources of emf's, such as batteries, are connected in series
 - The total voltage is the algebraic sum of their voltages, if their direction is the same
 - V_{ac}=1.5 + 1.5=3.0V in figure (a).
 - If the batteries are arranged in an opposite direction, the total voltage is the difference between them
 - V_{ac}=20 12=8.0V in figure (b) This is the way we jump start a car

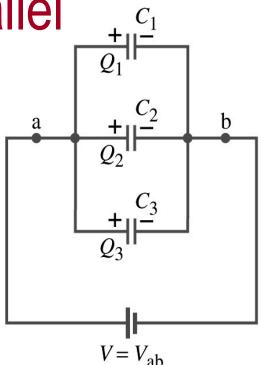

- Connecting batteries in opposite direction is wasteful.
- This, however, is the way a battery charger works.
- Since the 20V battery is at a higher voltage, it forces charges into 12V battery
- Some battery are rechargeable since their chemical reactions are reversible but most the batteries can not reverse their chemical reactions


Tuesday, June 18, 2013

PHYS 1442-001, Summer 2013 Dr. Jaehoon Yu



Parallel arrangements (c) are used only to increase currents.


Capacitors in Series or Parallel

- Capacitors are also used in many electric circuits.
- So what is an electric circuit again?
 - A closed path of conductors, usually wires, connecting capacitors, resisters and other electrical devices, in which
 - charges can flow
 - And includes a source of potential such as a battery
- Capacitors can be connected in various ways.

Capacitors in Parallel

- Parallel arrangement provides the <u>same</u> <u>voltage</u> across all the capacitors.
 - Left hand plates are at V_{a} and right hand plates are at V_{b}
 - So each capacitor plate acquires charges given by the formula
 - $Q_1 = C_1 V$, $Q_2 = C_2 V$, and $Q_3 = C_3 V$

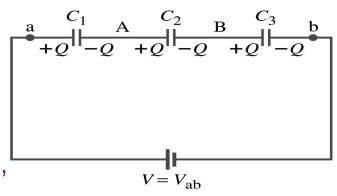
12

- The total charge Q that must leave the battery is then
 Q=Q₁+Q₂+Q₃=V(C₁+C₂+C₃)
- Consider that the three capacitors behave like an equivalent one - $Q=C_{eq}V=V(C_1+C_2+C_3)$
- Thus the equivalent capacitance in parallel is $C_{eq} = C_1 + C_2 + C_3$

What is the net effect? ^H The capacitance increases!!!

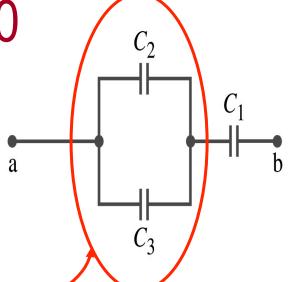
Capacitors in Series

- Series arrangement is more interesting
 - When a battery is connected, +Q flows to the left plate of C_1 and -Q flows to the right plate of C_3 inducing opposite sign charges on the other plates.
 - Since the capacitor in the middle was originally neutral, charges get induced to neutralize the induced charges
 - So the charge on each capacitor is the same value, Q. (Same charge)
- Consider that the three capacitors behave like an equivalent one


-
$$Q=C_{eq}V \rightarrow V=Q/C_{eq}$$

- The total voltage V across the three capacitors in series must be equal to the sum of the voltages across each capacitor.
 - V=V₁+V₂+V₃=(Q/C₁+Q/C₂+Q/C₃)
- Putting all these together, we obtain:
- $V=Q/C_{eq}=Q(1/C_1+1/C_2+1/C_3)$
- Thus the equivalent capacitance is

What is the net effect?


$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

Example 19 – 10

Equivalent Capacitor: Determine the capacitance of a single capacitor that will have the same effect as the combination shown in the figure. Assume $C_1=C_2=C_3=C$.

We should do these first!!

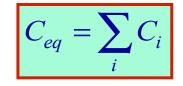
How? These are in parallel so the equivalent capacitance is:

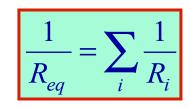
$$C_{eq1} = C_1 + C_2 = 2C$$

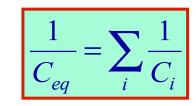
Now the equivalent capacitor is in series with C_1 .

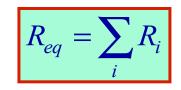
$$\frac{1}{C_{eq}} = \frac{1}{C_{eq1}} + \frac{1}{C_2} = \frac{1}{2C} + \frac{1}{C} = \frac{3}{2C} \quad \text{Solve for } C_{eq} = \frac{2C}{3}$$

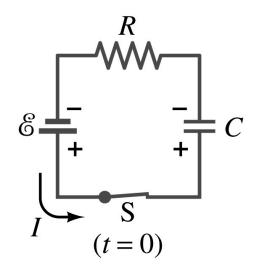
Resister and Capacitor Arrangements


Parallel Capacitor arrangements


Parallel Resister arrangements

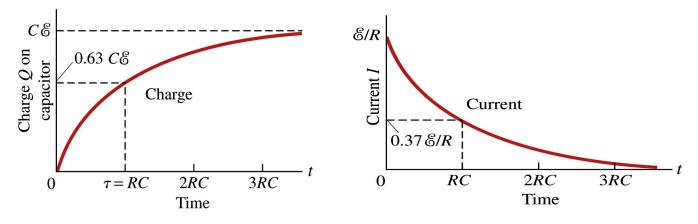

Series Capacitor arrangements


Series Resister arrangements

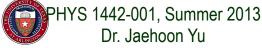


RC Circuits

- Circuits containing both resisters and capacitors
 - RC circuits are used commonly in everyday life
 - Control windshield wiper
 - Timing of traffic light color change
 - · Camera flashes and heart pacemakers
- How does an RC circuit look?
 - There should be a source of emf, capacitors and resisters
- What happens when the switch S is closed?
 - Current immediately starts flowing through the circuit.
 - Electrons flows out of negative terminal of the emf source, through the resister R ____ and accumulates on the upper plate of the capacitor
 - The electrons from the bottom plate of the capacitor flow into the positive terminal of the battery, leaving only positive charge on the bottom plate
 - As the charge accumulates on the capacitor, the potential difference across it increases
 - The current reduces gradually to 0 until the voltage across the capacitor is the same as emf.
 - The charge on the capacitor increases unil it reaches to its maximum, CE. —
 - What happens when the battery in the circuit is replaced with a wire? esday, June 18, 2013 PHYS 1442-001, Summer 2013 Tuesday, June 18, 2013 Dr. Jaehoon Yu

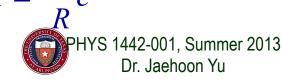

Capacitor

discharges

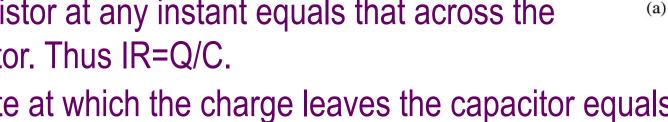


RC Circuits

- How does all this look like in graphs?
 - Charge and the current on the capacitor as a function of time



- From energy conservation (Kirchhoff's 2^{nd} rule), the emf ϵ must be equal to the voltage drop across the capacitor and the resister
 - $\varepsilon = IR + Q/C$
 - *R* includes all resistance in the circuit, including the internal resistance of the battery, *I* is the current in the circuit at any instant, and Q is the charge of the capacitor at that same instance.


Analysis of RC Circuits

- Charge $Q = C \varepsilon (1 e^{-t/RC})$ and voltage $V_C = \varepsilon (1 e^{-t/RC})$
- What can we see from the above equations?
 - Q and V_C increase from 0 at t=0 to maximum value Q_{max}=C ϵ and V_C= ϵ .
- In how much time?
 - The quantity RC is called the time constant, $\tau,$ of the circuit
 - τ =RC, What is the unit? Sec.
 - What is the physical meaning?
 - The time required for the capacitor to reach (1-e⁻¹)=0.63 or 63% of its full charge
- The current is $I = \frac{\varepsilon}{R} e^{-t/RC}$

Discharging RC Circuits

- When a capacitor is already charged, it is allowed to discharge through a resistance R.
 - When the switch S is closed, the voltage across the resistor at any instant equals that across the capacitor. Thus IR=Q/C.

- The rate at which the charge leaves the capacitor equals the negative of the current flows through the resistor
 - $I = -\Delta Q / \Delta t$. Why negative?
 - Since the current is leaving the capacitor
- Thus the voltage equation becomes a differential equation

Dr. Jaehoon Yu

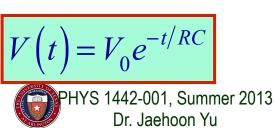
$$-\frac{\Delta Q}{\Delta t}R = \frac{Q}{C}$$
Rearrange terms

$$\frac{\Delta Q}{Q} = -\frac{\Delta t}{RC}$$
Tuesday, June 18, 2013
PHYS 1442-001, Summer 2013

 $V_0 \stackrel{\perp}{=} C$

(t = 0)

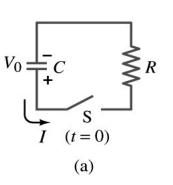
Discharging RC Circuits


- What happens when an RC circuit discharges from its original charge of Q_0 ?

- Charge at any given time t is

$$p_{0}$$

$$\frac{Q_{0}}{10 \text{ BUD}} = Q_{0}e^{-t/RC}$$
(b)


- What does this tell you about the charge on the capacitor?
 - It decreases exponentially with time at a time constant RC
 - Just like the case of charging
- The current is:

 $=I_0e^{-t/RC}$

Ex. 19 – 12

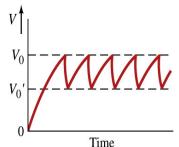
Discharging RC circuit. If a charged capacitor C= 35μ F is connected to a resistance R= 120Ω as in the figure, how much time will elapse until the voltage falls to 10% of its original (maximum) value?

What is the RC time of this circuit?

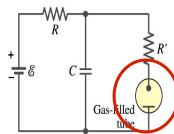
The RC time $\tau = RC = 120 \cdot 35 \times 10^{-6} = 4.2 ms$ Since we are looking for the time it takes for V_c=10% of V₀, we obtain

$$V(t) = V_0 e^{-t/RC} \quad \text{For } 0.1V_0 = V_0 e^{-t/RC}$$

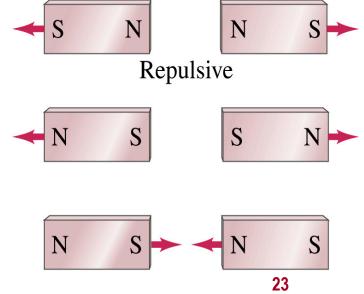
Rearrange terms $-t/RC = \ln 0.1 = -\ln 10 = -2.3$
Solve for t $t = RC \cdot (2.3) = 4.2 \times 10^{-3} \cdot (2.3) = 9.7 \times 10^{-3} (\text{sec})$



Application of RC Circuits


- What do you think the charging and discharging characteristics of RC circuits can be used for?
 - To produce voltage pulses at a regular frequency $\frac{1}{2}$
 - How?
 - The capacitor charges up to a particular voltage and discharges
 - A simple way of doing this is to use breakdown of voltage in a gas filled tube
 - The discharge occurs when the voltage breaks down at V_0
 - After the completion of discharge, the tube no longer conducts
 - Then the voltage is at V_0 and it starts charging up
 - How do you think the voltage as a function of time look?
 - » A sawtooth shape
 - Pace maker, intermittent windshield wiper, etc

Tuesday, June 18, 2013

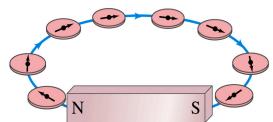

2 Z

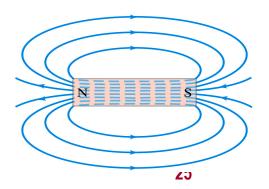
Magnetism

- What are magnets?
 - Objects with two poles, north and south poles
 - The pole that points to geographical north is the north pole and the other is the south pole
 - Principle of compass
 - These are called magnets due to the name of the region, Magnesia, where rocks that attract each other were found
- What happens when two magnets are brought to each other?
 - They exert force onto each other
 - What kind?
 - Both repulsive and attractive forces depending on the configurations
 - Like poles repel each other while the unlike poles attract

Magnetism

- So the magnet poles are the same as the electric charge?
 - No. Why not?
 - While the electric charges (positive and negative) can be isolated the magnet poles cannot be isolated.
 - So what happens when a magnet is cut?
 - If a magnet is cut, two magnets are made.
 - The more they get cut, the more magnets are made
 - Single pole magnets are called the monopole but it has not been seen yet
- Ferromagnetic materials: Materials that show strong magnetic effects
 - Iron, cobalt, nickel, gadolinium and certain alloys
- Other materials show very weak magnetic effects


Magnetic Field


- Just like the electric field that surrounds electric charge, a magnetic field surrounds a magnet
- What does this mean?
 - Magnetic force is also a field force
 - The force one magnet exerts onto another can be viewed as the interaction between the magnet and the magnetic field produced by the other magnet
 - What kind of quantity is the magnetic field? Vector or Scalar? Vector
- So one can draw magnetic field lines, too.
 - The direction of the magnetic field is tangent to a line at any point
 - The direction of the field is the direction the north pole of a compass would point to
 - The number of lines per unit area is proportional to the strength of the magnetic field
 - Magnetic field lines continue inside the magnet
 - Since magnets always have both the poles, magnetic field lines form closed loops unlike electric field lines

iuesuay, june 10, 2013

Dr. Jaehoon Yu

