PHYS 1441 – Section 001 Lecture #11

Monday, June 23, 2014 Dr. **Jae**hoon **Yu**

- Newton's Law of Universal Gravitation
- Weightlessness
- Work done by a constant force
- Multiplication of Vectors
- Work-Kinetic Energy Theorem

Announcements

- Term exam #2
 - In class this Wednesday, June 25
 - Non-comprehensive exam
 - Covers CH 4.7 to what we finish tomorrow, Tuesday, June 24
 - Bring your calculator but DO NOT input formula into it!
 - Your phones or portable computers are NOT allowed as a replacement!
 - You can prepare a one 8.5x11.5 sheet (front and back) of <u>handwritten</u> formulae and values of constants for the exam → no solutions, derivations or definitions!
 - No additional formulae or values of constants will be provided!

Newton's Law of Universal Gravitation

People have been very curious about the stars in the sky, making observations for a long~ time. The data people collected, however, have not been explained until Newton has discovered the law of gravitation.

Every object in the Universe attracts every other object with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

How would you write this
law mathematically?
$$F_g \propto \frac{m_1 m_2}{r_{12}^2}$$
 With G $F_g = G \frac{m_1 m_2}{r_{12}^2}$
G is the universal gravitational
constant, and its value is $G = 6.673 \times 10^{-11}$ Unit? $N \cdot m^2 / kg^2$

This constant is not given by the theory but must be measured by experiments.

This form of forces is known as <u>the inverse-square law</u>, because the magnitude of the force is inversely proportional to the square of the distances between the objects.

Ex. Gravitational Attraction

What is the magnitude of the gravitational force that acts on each particle in the figure, assuming $m_1=12$ kg, $m_2=25$ kg, and r=1.2m?

$$F = G \frac{m_1 m_2}{r^2}$$

= $(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) \frac{(12 \text{ kg})(25 \text{ kg})}{(1.2 \text{ m})^2}$
= $1.4 \times 10^{-8} \text{ N}$

Monday, June 23, 2014

Why does the Moon orbit the Earth?

Earth M_E

Gravitational Force and Weight

Gravitational Force, \mathcal{F}_{g}

The attractive force exerted on an object by another object

 $\vec{F}_G = \vec{ma} = \vec{mg}$

Weight of an object with mass M is

$$W = \left| \overrightarrow{F}_G \right| = M \left| \overrightarrow{g} \right| = Mg$$

What is the SI unit of weight?

Since weight depends on the magnitude of gravitational acceleration, **g**, it varies depending on geographical location.

By measuring the forces one can determine masses. This is why you can measure mass using the spring scale.

Gravitational Acceleration

$$W = G \frac{M_E m}{r^2}$$

W = mg

$$mg = G \frac{M_E m}{r^2}$$

$$g = G \frac{M_E}{r^2}$$

Gravitational acceleration at distance r from the center of the earth!

Monday, June 23, 2014

PHYS 1441-001, Summer 2014 Dr. Jaehoon Yu

Mass of earth = $M_{\rm E}$

Magnitude of the gravitational acceleration on the surface of the Earth

 $F_{G} = G \frac{M_{E}m}{r^{2}} = G \frac{M_{E}m}{R_{E}^{2}}$ $= mg^{r^{2}}$ Gravitational force on the surface of the earth: $g = G \frac{M_E}{R_E^2} \qquad \begin{array}{l} G = 6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2} \\ M_E = 5.98 \times 10^{24} \,\mathrm{kg}; \ R_E = 6.38 \times 10^6 \,\mathrm{m} \end{array}$ $= \left(6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2} \right) \frac{\left(5.98 \times 10^{24} \,\mathrm{kg} \right)}{\left(6.38 \times 10^6 \,\mathrm{m} \right)^2}$ $= 9.80 \,\mathrm{m/s^2}$

Monday, June 23, 2014

Example for Universal Gravitation

Using the fact that g=9.80 m/s² on the Earth's surface, find the average density of the Earth.

Since the gravitational acceleration is

$$F_{g} = G \frac{M_{E}m}{R_{E}^{2}} = mg \quad \text{Solving for g} \quad \mathcal{G} = G \frac{M_{E}}{R_{E}^{2}} = 6.67 \times 10^{-11} \frac{M_{E}}{R_{E}^{2}}$$

$$\text{Solving for M}_{\text{E}} \qquad M_{E} = \frac{R_{E}^{2}g}{G}$$
Therefore the density of the ensity of the Earth is
$$\rho = \frac{M_{E}}{V_{E}} = \frac{\frac{R_{E}^{2}g}{G}}{\frac{4\pi}{3}R_{E}^{3}} = \frac{3g}{4\pi GR_{E}}$$

$$= \frac{3 \times 9.80}{4\pi \times 6.67 \times 10^{-11} \times 6.37 \times 10^{6}} = 5.50 \times 10^{3} kg / m^{3}$$
Monday, June 23, 2014

Satellite in Circular Orbits

There is only one speed that a satellite can have if the satellite is to remain in an orbit with a fixed radius.

Ex. Orbital Speed of the Hubble Space Telescope Determine the speed of the Hubble Space Telescope orbiting at a height of 598 km above the earth's surface.

$$v = \sqrt{\frac{GM_E}{r}}$$

= $\sqrt{\frac{(6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2})(5.98 \times 10^{24} \,\mathrm{kg})}{6.38 \times 10^6 \,\mathrm{m} + 598 \times 10^3 \,\mathrm{m}}}$
= 7.56×10³ m/s (16900 mi/h)

Period of a Satellite in an Orbit

This is applicable to any satellite or even for planets and moons.

Geo-synchronous Satellites

Global Positioning System (GPS)

Ex. Apparent Weightlessness and Free Fall

In each case, what is the weight recorded by the scale?

Ex. The Artificial Gravity

At what speed must the surface of the space station move so that the astronaut experiences a push on his feet equal to his weight on earth? The radius is 1700 m.

Monday, June 23, 2014

