PHYS 1441 – Section 001 Lecture #2

Tuesday, June 9, 2015 Dr. <mark>Jae</mark>hoon <mark>Yu</mark>

- Chapter 1
 - Standards and units
 - Dimensional Analysis
- Chapter 2:
 - One Dimensional Motion
 - Instantaneous Velocity and Speed
 - Acceleration
 - Motion under constant acceleration

Announcements

- Homework registration
 - 47/69 have registered as of early this morning
 - Only 25 have submitted answers!!
 - You must complete the process all the way to the submission to obtain the free full credit for homework #1!!
 - You need to get approval for enrollment from me so please take an action quickly!
- Reading assignment #1: Read and follow through all sections in appendix A by ۲ tomorrow, Wednesday, June 10
- There will be a quiz tomorrow Wednesday, June 10, on this reading assignment and what we have learned up to today!
 - Beginning of the class \rightarrow Do not be late
 - Bring your calculator but DO NOT input formula into it!
 - Cell phones or any types of computers cannot replace a calculator!
 - BYOF: You may bring a one 8.5x11.5 sheet (front and back) of <u>handwritten</u> formulae and values of constants for the quiz
 - No derivations, word definitions or solutions of any problems !
 - No additional formulae or values of constants will be provided!

Special Project #1 for Extra Credit

- Find the solutions for $yx^2-zx+v=0 \rightarrow 5$ points
 - You cannot just plug into the quadratic equations!
 - You must show a complete algebraic process of obtaining the solutions!
- Derive the kinematic equation $v^2 = v_0^2 + 2a(x x_0)$ from first principles and the known kinematic equations \rightarrow 10 points
- You must <u>show your OWN work in detail</u> to obtain the full credit
 - Must be in much more detail than in this lecture note!!!
 - Please do not copy from the lecture note or from your friends. You will all get 0!
- Due Thursday, June 11

Highest Energy of 13 TeV Collisions

Needs for Standards and Units

- Seven fundamental quantities for physical measurements
 - Length, Mass, Time, Electric Current, Temperature, the Amount of substance and the Luminous intensity
- Need a language that everyone can understand each other
 - Consistency is crucial for physical measurements
 - The same quantity measured by one must be comprehendible and reproducible by others
 - Practical matters contribute
- A system of unit called <u>SI</u> (*System Internationale*) was established in 1960 (it has been 55 yrs!)
 - <u>Length</u> in meters (*m*)
 - <u>Mass</u> in kilo-grams (kg)
 - <u>**Time</u>** in seconds (*s*)</u>

Definition of Three Relevant Base Units

SI Units	Definitions
1 m (Length) = 100 cm	One meter is the length of the path traveled by light in vacuum during the time interval of <u>1/299,792,458</u> of a second.
1 kg (Mass) = 1000 g	It is equal to the mass of the international prototype of the kilogram, made of platinum-iridium in International Bureau of Weights and Measure in France.
1 s (Time)	One second is the <u>duration of 9,192,631,770 periods</u> <u>of the radiation</u> corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 (C ¹³³) atom.

•There are total of seven base quantities (see table 1-5 on page 10)

There are prefixes that scales the units larger or smaller for convenience (see T.1-4 pg. 10)
Units for other quantities, such as Newtons for force and Joule for energy, for ease of use

Prefixes, expressions and their meanings Larger Smaller

- deca (da): 10¹
- hecto (h): 10²
- kilo (k): 10³
- mega (M): 10⁶
- giga (G): 10⁹
- tera (T): 10¹²
- peta (P): 10¹⁵
- exa (E): 10¹⁸
- zetta (Z): 10²¹
- yotta (Y): 10²⁴

Tuesday, June 9, 2015

PHYS 1441-001, Summer 2015 Dr. Jaehoon Yu

- deci (d): 10⁻¹
- centi (c): 10⁻²
- milli (m): 10⁻³
- micro (µ): 10⁻⁶
- nano (n): 10⁻⁹
- pico (p): 10⁻¹²
- femto (f): 10⁻¹⁵
- atto (a): 10⁻¹⁸
- zepto (z): 10⁻²¹
- yocto (y): 10⁻²⁴

International Standard Institutes

- International Bureau of Weights and Measure http://www.bipm.fr/
 - Base unit definitions: <u>http://www.bipm.fr/enus/3_SI/base_units.html</u>
 - Unit Conversions: <u>http://www.bipm.fr/enus/3_SI/</u>
- US National Institute of Standards and Technology (NIST) <u>http://www.nist.gov/</u>

How do we convert quantities from one unit to another?

Unit 1 = Conversion factor X Unit 2

1 inch	2.54	cm
1 inch	0.0254	m
1 inch	2.54x10⁻⁵	km
1 ft	30.3	cm
1 ft	0.303	m
1 ft	3.03x10 ⁻⁴	km
1 hr	60	minutes
1 hr	3600	seconds
And many	More	Here

Examples 1.4 and 1.5 for Unit Conversions

 Ex 1.4: An apartment has a floor area of 880 square feet (ft²). Express this in square meters (m²).

What do we need to know?

880 ft² = 880 ft² ×
$$\left(\frac{12in}{1ft}\right)^{2} \left(\frac{0.0254 \text{ m}}{1 \text{ in}}\right)^{2}$$

= 880 ft² × $\left(\frac{0.0929 \text{ m}^{2}}{1 \text{ ft}^{2}}\right)$
= 880 × 0.0929 m² ≈ 82m²

Ex 1.5: Where the posted speed limit is 55 miles per hour (mi/h or mph), what is this speed (a) in meters per second (m/s) and (b) kilometers per hour (km/h)? $1 \text{ mi} = (5280 \text{ ft}) \left(\frac{12 \text{ in}}{1 \text{ ft}} \right) \left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right) \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = 1609 \text{ m} = 1.609 \text{ km}$ (a) 55 mi/h = (55 mi) $\left(\frac{1609 \text{ m}}{1 \text{ mi}} \right) \left(\frac{1}{1 \text{ h}} \right) \left(\frac{1 \text{ h}}{3600 \text{ s}} \right) = 25 \text{ m/s}$ (b) 55 mi/h = (55 mi) $\left(\frac{1.609 \text{ km}}{1 \text{ mi}} \right) \left(\frac{1}{1 \text{ h}} \right) = 88 \text{ km/hr}$ Tuesday, June 9, 2015 $\int_{\text{Dr. Jaehoon Yu}}^{\text{PHYS 1441-001, Summer 2015}} 10$

Estimates & Order-of-Magnitude Calculations

- Estimate = Approximation
 - Useful for rough calculations to determine the necessity of higher precision
 - Usually done under certain assumptions
 - Might require modification of assumptions, if higher precision is necessary
- Order of magnitude estimate: Estimates done to the precision of 10s or exponents of 10s;
 - Three orders of magnitude: $10^3 = 1,000$
 - Round up for Order of magnitude estimate; $8 \times 10^7 \sim 10^8$
 - Similar terms: "Ball-park-figures", "guesstimates", etc

Back of the Chapter Problem # 34

Estimate the radius of the Earth using triangulation as shown in the picture when d=4.4km and h=1.5m.

Dimension and Dimensional Analysis

- An extremely useful concept in solving physical problems
- Good to write physical laws in mathematical expressions
- No matter what units are used the base quantities are the same
 - -Length (distance) is length whether meter or inch is used to express the size: Usually denoted as [L]
 - The same is true for *Mass ([M])* and *Time ([T])*
 - One can say "Dimension of Length, Mass or Time"
 - Dimensions are treated as algebraic quantities: Can perform two algebraic operations; multiplication or division

Dimension and Dimensional Analysis cnt'd

- One can use dimensions only to check the validity of one's expression: Dimensional analysis
 - Eg: Speed $[v] = [\mathcal{L}]/[\mathcal{T}] = [\mathcal{L}]/[\mathcal{T}^{-1}]$
 - •Distance (L) traveled by a car running at the speed V in time T

 $-\mathcal{L} = \mathcal{V}^{\star}\mathcal{T} = [\mathcal{L}/\mathcal{T}]^{\star}[\mathcal{T}] = [\mathcal{L}]$

More general expression of dimensional analysis is using exponents: eg. [v]=[LⁿT^m] =[L][T⁻¹] where n = 1 and m = -1

Examples

- Show that the expression [v] = [at] is dimensionally correct
 - Speed: <u>[v]</u> =[L]/[T]
 - Acceleration: $[a] = [L]/[T]^2$
 - Thus, $[at] = (L/T^2)xT=LT^{(-2+1)} = LT^{-1} = [L]/[T] = [v]$

•Suppose the acceleration *a* of a circularly moving particle with speed v and radius *r* is proportional to r^n and v^m . What are *n* and *m*?

Some Fundamentals

- Kinematics: Description of Motion without understanding the cause of the motion
- Dynamics: Description of motion accompanied with understanding the cause of the motion
- Vector and Scalar quantities:
 - Scalar: Physical quantities that require magnitude but no direction
 - Speed, length, mass, height, volume, area, magnitude of a vector quantity, etc
 - Vector: Physical quantities that require both magnitude and direction
 - Velocity, Acceleration, Force, Momentum
 - It does not make sense to say "I ran with the velocity of 10miles/hour."
- Objects can be treated as point-like if their sizes are smaller than the scale in the problem
 - Earth can be treated as a point like object (or a particle)in celestial problems
 - Simplification of the problem (The first step in setting up to solve a problem...)
 - Any other examples?

Some More Fundamentals

- Motions: Can be described as long as the position is known at any given time (or position is expressed as a function of time)
 - Translation: Linear motion along a line
 - Rotation: Circular or elliptical motion
 - Vibration: Oscillation
- Dimensions
 - 0 dimension: A point
 - − 1 dimension: Linear drag of a point, resulting in a line →
 Motion in one-dimension is a motion on a line
 - 2 dimension: Linear drag of a line resulting in a surface
 - 3 dimension: Perpendicular Linear drag of a surface, resulting in a stereo object

Displacement, Velocity and Speed One dimensional displacement is defined as: $\Delta x \equiv x_f - x_i$ A vector quantity Displacement is the difference between initial and final potions of the motion and is <u>a vector quantity</u>. How is this different than distance? Unit? The average velocity is defined as: $v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t} \equiv \frac{\text{Displacement}}{\text{Elapsed Time}}$ m Displacement per unit time in the period throughout the motion **Total Distance Traveled** The average speed is defined as: $v \equiv -$ **Total Elapsed Time** Unit? m/s A scalar quantity

What is the displacement?

How much is the elapsed time?

$$\Delta x = x_2 - x_1$$
$$\Delta t = t - t_0$$

Difference between Speed and Velocity

• Let's take a simple one dimensional translation that has many steps:

Let's call this line as X-axis

