PHYS 1441 – Section 001 Lecture #15

Thursday, June 28, 2018 Dr. <mark>Jae</mark>hoon **Yu**

- Chapter 28:Sources of Magnetic Field
 - Sources of Magnetic Field
 - Magnetic Field Due to Straight Wire
 - Magnetic Materials
 - Hysteresis
- Chapter 29:EM Induction & Faraday's Law
 - Induced EMF and EM Induction
 - Faraday's Law of Induction
 - Lenz's Law

Thursday, June 28, 2018

Announcements

- Class feedback survey at http://uta.mce.cc/
 - Bring out your and fill in the survey now
- Planetarium extra credit
 - Be sure to tape one end onto a sheet of paper with your name on it
 - Submit it at the beginning of the final exam at 10:30 12:30pm Monday, July 9
 - DO NOT miss the exam! You will get an F!
- Quiz #4
 - Beginning of the class Thursday, July 5
 - Covers CH 28.1 what we finish Tuesday, July 3

Thursday, June 28, 2018

Sources of Magnetic Field

- We have learned so far about the effects of magnetic field on the electric current and the moving charge
- We will now learn about the dynamics of magnetism
 - How do we determine magnetic field strengths in certain situations?
 - How do two wires with electric current interact?
 - What is the general approach to finding the connection between current and magnetic field?

Magnetic Field due to a Straight Wire

- The magnetic field due to the current flowing through a straight wire forms a circular pattern around the wire
 - What do you imagine the strength of the field is as a function of the distance from the wire?
 - It must be weaker as the distance increases
 - How about as a function of current?
 - Directly proportional to the current
 - Indeed, the above are experimentally verified $B \propto \frac{I}{I}$
 - This is valid as long as r << the length of the wire
 - The proportionality constant is $\mu_0/2\pi$, thus the field strength becomes $\mu_0 I$

$$B = \frac{\mu_0 I}{2\pi r}$$

- μ_0 is the permeability of free space $\mu_0 = 4\pi \times 10^{-7} T \cdot m/A$

Example 28 – 1

Calculation of B near wire. A vertical electric wire in the wall of a building carries a DC current of 25A upward. What is the magnetic field at a point 10cm due East of this wire?

Using the formula for the magnetic field near a straight wire

$$B = \frac{\mu_0 I}{2\pi r}$$

So we can obtain the magnetic field at 10cm away as

$$B = \frac{\mu_0 I}{2\pi r} = \frac{\left(4\pi \times 10^{-7} \ T \cdot m/A\right) \cdot \left(25A\right)}{\left(2\pi\right) \cdot \left(0.01m\right)} = 5.0 \times 10^{-5} \ T$$

Thursday, June 28, 2018

⊢ 10 cm →•