PHYS 1444 – Section 001 Lecture #8

Thursday, June 13, 2019 Dr. <mark>Jae</mark>hoon **Yu**

- Chapter 23
 - Electric Potential Due to Electric Dipole
 - E Determined from V
 - Electrostatic Potential Energy
- Chapter 24 Capacitance etc..
 - Capacitors
 - Capacitors in Series or Parallel

Today's homework is #6, due 11pm, Wednesday, June 19!!

Announcements

- Reading Assignment
 - CH 23.9
- Mid-term exam
 - In class Tuesday, June 18
 - Comprehensive exam which covers CH21.1 through what we learn Monday, June 17 plus appendices A and B the math refresher
 - BYOF: You may bring one 8.5x11.5 sheet (front and back) of <u>handwritten</u> formulae and values of constants for the exam
 - No derivations, word definitions, setups or solutions of any problems!
 - No additional formulae or values of constants will be provided!

Reminder: Special Project #3

- Particle Accelerator. A charged particle of mass M with charge
 -Q is accelerated in the uniform field E between two parallel charged plates whose separation is D as shown in the figure on the right. The charged particle is accelerated from an initial speed v₀ near the negative plate and passes through a tiny hole in the positive plate as shown in the figure right.
 - Derive the formula for the electric field E to accelerate the charged particle to a fraction *f* of the speed of light *c*. Express E in terms of M, Q, D, *f*, c and v₀.
 - (a) Using the Coulomb force and kinematic equations. (8 points)
 - (b) Using the work-kinetic energy theorem. (8 points)
 - (c) Using the formula above, evaluate the strength of the electric field E to accelerate an electron from 0.1% of the speed of light to 90% of the speed of light. You need to look up the relevant constants, such as mass of the electron, charge of the electron and the speed of light. (5 points)
- Please do NOT copy but have your own handwritten answer!
- Due beginning of the class Monday, June 17

Electric Potential due to Electric Dipoles

- What is an electric dipole?
 - Two equal point charge Q of opposite signs separated by a distance ℓ and behaves like one entity: p=Q ℓ
- For the electric potential due to a dipole at a point $P_{/}$

– We take V=0 at r=∞

- The simple sum of the potential at p by the two charges is $V = \sum \frac{Q_i}{4\pi\varepsilon_0} \frac{1}{r_{ia}} = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{r} + \frac{(-Q)}{r + \Delta r} \right) = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r} - \frac{1}{r + \Delta r} \right) = \frac{Q}{4\pi\varepsilon_0} \frac{\Delta r}{r(r + \Delta r)}$
- Since $\Delta r = l \cos \theta$ and if r >> l, $r >> \Delta r$, thus $r + \Delta r \sim r$ and

E Determined from V

- Potential difference between two points under the electric field is $V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{l}$
- So in a differential form, we can write

$$dV = -\vec{E} \cdot d\vec{l} = -E_l dl$$

– What are dV and E_{f} ?

- dV is the infinitesimal potential difference between the two points separated by a distance $d\ell$
- E_{ℓ} is the field component along the direction of $d\ell$.
- Thus we can write the field component E_{f} as

Thursday, June 13, 2019

Physical **Meaning?**

PHYS 1444-001, Summer Dr. Jaehoon Yu

The component of the electric field in any direction is equal to the negative rate of change of the electric potential as a function of distance in that direction.!!

E Determined from V, cnt'd

- The quantity dV/d l is called the gradient of V in a particular direction
 - If no direction is specified, the term gradient refers to the direction on which V changes most rapidly and this would be the direction of the field vector E at that point.

- So if **E** and d*l* are parallel to each other, $E = -\frac{dV}{dl}$

- If E is written as a function x, y and z, the l refers to x, y and z $E_x = -\frac{\partial V}{\partial x}$ $E_y = -\frac{\partial V}{\partial y}$ $E_z = -\frac{\partial V}{\partial z}$ • $\frac{\partial V}{\partial x}$ is the "partial derivative" of V with respect to x,
- while y and z are held constant In vector form, $\vec{E} = -gradV = -\vec{\nabla}V = -\left(\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}\right)V$ $\vec{\nabla} = -\left(\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}\right)$ is called *def* or the *gradient operator* and is a <u>vector operator</u>.

Electrostatic Potential Energy

- Consider a case in which a point charge q is moved between points a and b where the electrostatic potential due to other charges in the system is V_a and V_b
- The change in electrostatic potential energy of q in the field by other charges is

$$\Delta U = U_b - U_a = q \left(V_b - V_a \right) = q V_{ba}$$

- Now what is the electrostatic potential energy of a system of charges?
 - Let's choose V=0 at r=∞
 - If there are no other charges around, single point charge Q_1 in isolation has no potential energy and is under no electric force

Electrostatic Potential Energy; Two charges

• If a second point charge Q_2 is brought close to Q_1 at a distance r_{12} , the potential due to Q_1 at the position of Q_2 is

$$V = \frac{Q_1}{4\pi\varepsilon_0} \frac{1}{r_{12}}$$

- The potential energy of the two charges relative to V=0 at $r = \infty$ is $U = Q_2 V = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r_{12}}$
 - This is the work that needs to be done by an external force to bring Q_2 from infinity to the distance r_{12} from Q_1 .
 - It is also a negative of the work needed to separate them to infinity.

Electrostatic Potential Energy; Three Charges

- So what do we do for three charges?
- Work is needed to bring all three charges together
 - Work needed to bring Q_1 to a certain location without the presence of any charge is 0.
 - Work needed to bring Q₂ to a distance to Q₁ is $U_{12} = \frac{1}{4\pi\varepsilon_0} \frac{Q_1Q_2}{r_{12}}$
 - Work need to bring Q_3 to certain distances to Q_1 and Q_2 is

$$U_{3} = U_{13} + U_{23} = \frac{1}{4\pi\varepsilon_{0}} \frac{Q_{1}Q_{3}}{r_{13}} + \frac{1}{4\pi\varepsilon_{0}} \frac{Q_{2}Q_{3}}{r_{23}}$$

- So the total electrostatic potential energy of the three charge system is $U = U_{12} + U_{13} + U_{23} = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q_1Q_2}{r_{12}} + \frac{Q_1Q_3}{r_{13}} + \frac{Q_2Q_3}{r_{23}} \right) \left[V = 0 \text{ at } r = \infty \right]$
 - What about a four charge system or N charge system?

Thursday, June 13, 2019

Electrostatic Potential Energy: electron Volt

- What is the unit of electrostatic potential energy?
 - Joules
- Joules is a very large unit in dealing with electrons, atoms or molecules atomic scale problems
- For convenience a new unit, electron volt (eV), is defined
 - 1 eV is defined as the energy acquired by a particle carrying the charge equal to that of an electron (q=e) when it moves across a potential difference of 1V.
 - How many Joules is 1 eV then? $1eV = 1.6 \times 10^{-19} C \cdot 1V = 1.6 \times 10^{-19} J$
- eV however is <u>NOT a standard SI unit</u>. You must convert the energy to Joules for computations.
- What is the speed of an electron with kinetic energy 5000eV?

Thursday, June 13, 2019

Capacitors (or Condensers)

- What is a capacitor?
 - A device that can store electric charge
 - But does not let them flow through
- What does it consist of?
 - Usually consists of two conducting objects (plates or sheets) placed near each other without touching
 - Why can't they touch each other?
 - The charge will neutralize...
- Can you give some examples?
 - Camera flash, UPS, Surge protectors, binary circuits, memory, etc...
- How is the capacitor different than the battery?
 - Battery provides potential difference by storing energy (usually chemical energy) while the capacitor stores charges but very little energy.

Thursday, June 13, 2019

PHYS 1444-001, Summer 2019 Dr. Jaehoon Yu

Capacitors

- A simple capacitor consists of a pair of parallel plates of area *A* separated by a distance *d*.
 - A cylindrical capacitors are essentially parallel plates wrapped around as a cylinder.

How would you draw symbols for a capacitor and a battery in a circuit diagram?

 – Capacitor -||

Dr Jaehoon

Capacitors

- What do you think will happen if a battery is connected (or the voltage is applied) to a capacitor?
 - The capacitor gets charged quickly, one plate positive and the other +Q - Qnegative in equal amount.
- Each battery terminal, the wires and the plates conductors. What does this mean?

- All conductors are at the same potential. And?
- So the full battery voltage is applied across the capacitor plates.
- So for a given capacitor, the amount of charge stored on each capacitor plate is proportional to the potential difference V_{ba} between the plates. How would you write this formula?

$$Q = CV_{ba}$$

C is a property of a capacitor so does not depend on Q or V.

- C is a proportionality constant. called the capacitance of the device. Normally use μ F or pF.
- What is the unit? Farad (F) or