PHYS 1441 – Section 001

Lecture #5

Monday, June 15, 2020 Dr. **Jae**hoon **Yu**

- Chapter 22
 - Gauss' Law
 - Electric Flux
 - Gauss' Law with Multiple Charges
- Chapter 23
 - Electric Potential Energy
 - Electric Potential due to Point Charges

Today's homework is #3, due 11pm, Thursday, June 18!!

Monday, June 15, 2020

Announcements

• Reading assignment: CH23.9

Reminder: SP#2 – Angels & Demons

- Compute the total possible energy released from an annihilation of x-grams of anti-matter and the same quantity of matter, where x is the last two digits of your SS# or DL#. (20 points)
 - Use the famous Einstein's formula for mass-energy equivalence
- Compute the power output of this annihilation when the energy is released in x ns, where x is again the first two digits of your SS# or DL#. (10 points)
- Compute how many cups of gasoline (8MJ) this energy corresponds to. (5 points)
- Compute how many months of world electricity usage (3.6GJ/mo) this energy corresponds to. (5 points)
- Due by the beginning of the class Wednesday, June. 17
 - All pages must be in one PDF file with the name SP2-first-lastsummer20.pdf in an email with the subject "Special Project 2, PHYS1444"

Gauss' Law

- Gauss' law states the relationship between the electric charge and the electric field.
 - More generalized and elegant form of Coulomb's law.
- The electric field by the distribution of charges can be obtained using Coulomb's law by summing (or integrating) over the charge distributions.
- Gauss' law, however, gives an additional insight into the nature of electrostatic field and a more general relationship between the charge and the field

Electric Flux

• Let's imagine a surface of area A through which a uniform electric field E passes

- The electric flux Φ_{E} is defined as
 - $-\Phi_E$ =EA, if the field is perpendicular to the surface
 - $-\Phi_{E}$ =EAcos θ , if the field makes an angle θ to the surface
- So the electric flux is defined as $\Phi_E = \vec{E} \cdot \vec{A}$.
- How would you define the electric flux in words?
 - The total number of field lines passing through the unit area perpendicular to the field. $N_E \propto EA_\perp = \Phi_E$

Monday, June 15, 2020

Example 22 – 1

• Electric flux. (a) Calculate the electric flux through the rectangle in the figure (a). The rectangle is 10cm by 20cm and the electric field is uniform with magnitude 200N/C. (b) What is the flux if the angle is 30 degrees?

The electric flux is defined as $\Phi_E = \vec{E} \cdot \vec{A} = EA \cos \theta$

So when (a) θ =0, we obtain

$$\Phi_E = EA\cos\theta = EA = (200N/C) \cdot (0.1 \times 0.2m^2) = 4.0 \,\mathrm{N} \cdot \mathrm{m}^2/C$$

And when (b) θ =30 degrees, we obtain

$$\Phi_E = EA\cos 30^\circ = (200N/C) \cdot (0.1 \times 0.2m^2) \cos 30^\circ = 3.5 \,\mathrm{N} \cdot \mathrm{m}^2/C$$

Generalization of the Electric Flux

- Let's consider a surface of area A that is not a square or flat but in some random shape, and that the field is not uniform.
- The surface can be divided up into infinitesimally small areas of ΔA_i that can be considered flat.
- And the electric field through this area can be considered uniform since the area is very small.
- Then the electric flux through the entire surface is approximately $\Phi_{E} \approx \sum_{i=1}^{n} \vec{E}_{i} \cdot \Delta \vec{A}_{i}$
- In the limit where $\Delta \mathbf{A}_i \rightarrow 0$, the discrete $\Phi_E = \int \vec{E}_i \cdot d\vec{A}$ summation becomes an integral.

$$E$$

 E
 ΔA_i

open surface

enclosed surface

Generalization of the Electric Flux $dA_{e(<\frac{\pi}{2})}$

- We arbitrarily define that the area vector points outward from the enclosed volume.
 - For the line leaving the volume, $|\theta| < \pi/2$ and $\cos\theta > 0$. The flux Φ_E is positive.

 $d\mathbf{A} \quad \theta(>\frac{\pi}{2})$

- For the line coming into the volume, $|\theta|{>}\pi/2$ and cos $\theta{<}0.$ The flux Φ_{E} is negative.
- If Φ_E >0, there is net flux out of the volume.
- If $\Phi_{\rm E}$ <0, there is flux into the volume.
- In the above figures, each field line that enters the volume also leaves the volume, so $\Phi_E = \oint \vec{E} \cdot d\vec{A} = 0.$
- The flux is non-zero only if one or more lines start or end inside the surface.

E

Generalization of the Electric Flux

- The field line starts or ends only on a charge.
- Sign of the net flux on the surface A₁?
 - Net outward flux (positive flux)
- How about A₂?
 - Net inward flux (negative flux)
- What is the flux in the figure bottom right?
 - There should be a net inward flux (negative flux) since the total charge inside the volume is negative.
- The net flux that crosses an enclosed surface is proportional to the total charge inside the surface.
 This is the crux of Gauss' law.

