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ABSTRACT 
 
Data-intensive applications involve the processing of terabytes or petabytes of data that 
are distributed geographically among multiple data storage systems. Processing such 
large amounts of data places extreme demands on the computational resources available 
today.  A ‘computational grid’ provides the processing capabilities required for data-
intensive applications, by harnessing the compute resources provided by collections of 
workstations spread across multiple local and wide area networks. The three basic 
functionalities required for grid computation are: 1) the ability to move data across 
workstations, 2) the ability to launch processes on remote workstations, and 3) a security 
mechanism to guard the disparate resources. Several existing grid technologies provide 
these basic functionalities. A control program that makes of these basic functionalities is 
necessary to direct and monitor the applications running on the grid. This paper presents 
a modular framework for such a control program to efficiently manage any kind of data-
intensive application. The system described herein also takes into account the 
heterogeneity of resources in the grid. The framework proposes the use of standard grid 
protocols for the basic functionalities of the grid. We conclude with a detailed description 
of the individual modules in the framework. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
INTRODUCTION 
 
Scientists in various fields of science and technology have made tremendous 
advancements in their research over the years. Many scientific research activities 
conducted by the researchers across the world are producing large volumes of data. The 
data being produced vary in magnitude ranging from several hundred megabytes to 
several hundred terabytes. Engineering applications that produce such large volumes of 
data also requires the analysis of such data. These kinds of applications require high data 
storage capacity and high computational resources. Such applications are categorized as 
data-intensive applications. Several scientists working around the globe will make use of 
the data produced by these applications. The data is analyzed for specific patterns and 
also to generate new datasets from the existing data. Several such applications exist and 
we will look at a few of them. 
  High Energy Physics is the study of the elementary particles and then forces that 
govern their interactions at the most fundamental level. The Tevatron Collider, the 
world’s premier high-energy accelerator, is located at the Fermi National Accelerator 
Laboratory (Fermilab) in Batavia, Illinois, USA. D0 is one of the experiments done at 
Fermilab. The D0 experiment produces raw data from the accelerator in the order of a 
few megabytes per second. This experimental raw data is stored in tertiary storage 
devices and is also catalogued in the SAM (Sequential Access through Metadata) data 
management system. High Energy Physicist distributed all over the world will use this 
raw data to perform analysis work on them. This analysis work in turn will produce data 
that has to be stored back into the tertiary storage devices and also might be cached 
locally on the researcher’s desktop for further use. This type of application is a clear 
example of a data-intensive application. 
 Climate Modeling is another example of data-intensive application. DOE’s 
SciDAC program’s climate modeling wing aims at creating an advanced climate 
simulation program that will accelerate the execution of climate models. Such simulation 
programs will produce large amounts of data. Researcher located at universities and 
laboratories across the country will use the data to perform analysis work. The results 
produced by the analysis work will in turn need to be stored and retrieved in an efficient 
manner. Besides the storage and retrieval of data, the analysis and simulation tasks will 
be demanding computationally as well. 
 From the above examples, it is very clear that such data-intensive applications 
place heavy demands on the data storage systems as well as the computational resources 
available today. Such demands on computational resources can be met by large scale 
resource sharing. Resources mainly refer to data and compute cycles. Very large data 
storage systems are required to store such huge volumes of data. The data generated by 
the various scientific applications described earlier are stored in tertiary storage devices 
capable of holding tera bytes of data. Different clusters will then access these storage 
devices to access the data. The location of the data plays a very important role on where 
the program that accesses that data is going to execute. The programs accessing the data 
stored in such data storage systems might be scheduled to execute in a site near the data 
storage location where the data can be moved easily or if only a small part of the data is 
required then that particular data set might be moved to the location where the program 



resides. So the storage of such large volumes of data and their replication is an important 
issue in such applications. Having a centralized location for such data might cause a 
bottleneck in terms of accessing them. If thousands of users are trying to access the data 
from this centralized storage system, it will severely reduce the access time for the data. 
Hence data storage and access is an important criterion for data intensive applications. 
 The programs that access this data will need computational resources where they 
can execute. These programs will run for hours together and will require tremendous 
amounts of cpu cycles for their execution. If a program runs on a single standalone 
computer, it will take hours or even days to complete. So other programs that are ready to 
execute will have to wait till this program completes. Hence the need for network of 
workstations came up. CPU cycles of workstations located in geographically distributed 
sites can be used for executing these programs. This can greatly increase the compute 
cycles required for executing such programs. Hence a gird which is a collection of 
workstations located across geographically distributed sites is the most viable solution for 
applications with such requirements. But since the workstations are distributed 
geographically, security concerns arise. Data has to be securely moved between sites. 
Another issue that arises with such kinds of resource sharing is the privileges that should 
be granted to the executing programs. A scientist sitting in one corner of the world might 
be using the resource in another corner. So trust has to be established before he is allowed 
to use the remote resource and also his access rights are fixed before hand. Data intensive 
applications will make use of geographically distributed compute resources as well data. 
Hence standard mechanisms for data transport across resources, secure execution 
environments for executing programs and authentication methods are essential for any 
data intensive application.  
 From the above discussion we can see that the data and programs accessing the 
data have to stored and distributed efficiently. Having many replicas of the same data set 
is also not a good solution as the data storage costs will go up tremendously.  Hence an 
efficient means of transporting the required datasets, efficient scheduling decision with 
respect to allotting compute resources to a particular program is required. Several grid 
technologies are available that perform the basic functions required for the grid. 
Technologies like globus, condor etc. provide such functionalities required for grid 
processing of data-intensive application. In the next section this paper will discuss the 
related work that is being done. 
 Apart from the basic functionalities for the grid processing, there has to be a 
control program that makes use of these functionalities provided by existing technologies 
to effectively manage the resources in the grid. The control program also keeps track of 
the different data sets available for use and also the different data sets produced 
periodically in the grid. This paper proposes a framework for such a control program. The 
way this framework is employed in solving any grid based data-intensive application is 
described in the paper. 
 
 
 
 
 
 



RELATED WORK 
 
GLOBUS: 
 The primary aim of the Globus project is to provide the technologies that will 
harness the services provided by geographically distributed resources. Research in the 
Globus project concentrates on building computational grid infrastructures and also on 
the various issues encountered during the development of grid based applications. The 
Globus project has created the Globus toolkit. The Globus toolkit consists of the basic 
grid functions required for creating any grid based application. It is an open source 
architecture. Key grid computing components such as file transfer protocol, job launching 
mechanism and security is provided by globus. GridFTP is the reliable data transport 
protocol implemented in the globus project. It is based on FTP, but it adds more 
functionalities such as parallel transfer of data, partial transfer of data and a reliable mode 
for transferring data. It also provides the Globus Replica Catalogue which is used to 
maintain the replicas of files. The Monitoring and Discovery Service (MDS) is the 
resource information provider in the Globus project. It is based on the Light Weight 
Directory Access Protocol (LDAP). MDS can be queried to get the system information. 
The hardware profile of a workstation can be obtained by querying MDS. MDS can also 
be tuned to provide information about the applications executing on a resource. The 
Globus Resource Allocation Manager (GRAM) allocates the resources required by 
programs based on the requests it gets. It also manages the programs running on a 
particular resource. GRAM also updates the MDS with the availability of resources. 
Globus provides a security infrastructure sine security is an important feature of grid 
based applications. It uses the Grid Security Infrastructure (GSI) for providing secure 
authentication and communication. GSI is based on public key encryption, X.509 
certificates, and the Secure Sockets Layer (SSL) communication protocol.  So these are 
the component technologies provided by the Globus project for grid computation. 
 
CONDOR: 
 Condor is an ongoing research project at the University of Wisconsin at Madison. 
Condor’s ideology is based on High Throughput Computing (HTC). Scientific 
applications requiring numerous floating point operations will soak up the CPU of any 
resource to a great extent. Hence a network of resources can be used to provide the 
compute resources required for such computations. Condor tries to utilize the CPU cycles 
of otherwise idle resources.  It provides a job queuing mechanism. When jobs are 
submitted to the condor batch system, condor finds a resource that matches that particular 
job’s needs and the job is sent to that resource for execution. Condor can be configured in 
a variety of ways so that it takes advantage of the wasted CPU cycles of geographically 
distributed heterogeneous workstations. Condor can be made to use the CPU cycles of 
desktops where the keyboard and mouse are idle. When condor detects that a resource is 
no longer available for use, it can do check pointing and migrate the job to another 
available resource. Resource requests are matched with resources by means of a 
mechanism called ClassAds. Jobs can make requests based on the hardware required for 
them to run and similarly machines can state their requirements about the jobs that they 
are willing to run. ClassAd mechanism is based on such specifications of the resources. 
Condor provides a module called DAGMan that takes care of dependencies between jobs. 



DAGMan is a meta-scheduler for condor jobs that have inter-dependencies. A Directed 
Acyclic Graph(DAG) can represent a set of jobs which depend on each other. DAGMan 
will submit the jobs to Condor based on the parent child relationship. Children jobs are 
submitted only when then parent jobs complete. Hence by not submitting the jobs that 
depend on each other at the same time to condor, DAGMan reduces the workload on the 
Condor scheduler. Condor has various daemons that take care of running jobs on the 
resources. Since the basic functionalities required for grid processing is supported by 
Condor, it is used in many grid based applications. 
 
CONDOR-G: 
 Condor–G system uses software from the Condor and the globus project. Condor-
G uses the intra-domain features of Condor and the inter-domain features of Globus. 
Since Condor doesn’t take into consideration inter-domain resource sharing, security was 
not incorporated to a great extent. But the Globus project provides the necessary security 
infrastructure required to securely use resources from different domains and also for 
secure transport of files. Hence Condor-G takes the best out of two different technologies 
and encapsulates into one technology that can used for grid computing. 
 
GriPhyn (Grid Physics Network): 
 This project aims at creating a Petabyte-scale computational grid for data-
intensive applications. Four physics experiments that generate large volumes of data is 
the reason for the creation of petabyte-scale computational grids. To meet the needs of 
thousands of scientists, GriPhyN will deploy computational environments called Petscale 
Virtual Data Grids (PVDGs). The philosophy behind petabyte-scale computational grids 
is that CPU resources and datasets should be harnessed and datasets can be derived from 
other datasets using specifications describing the datasets. 
 These are the three major researches going on in the field of grid computing. The 
need for large scale resource sharing has prompted computer scientists all over the world 
to create computational grids that can meet the requirements of data-intensive 
applications. A framework for making this large scale resource sharing a reality is 
required. Several designs exist that try to achieve this. But each one has its own 
drawbacks. The most important criterion is to handle heterogeneity of the resources and 
to assume as little as possible about the hardware and software of a particular resource. A 
framework based on such as assumption will be able to adapt itself to different kinds of 
computing environments with the minimum changes.  
 
 
 
 
 
 
 
 
 
 
 



Design Criteria 
 The primary focus of this design is to build a framework that can support any kind 
of data-intensive application. Heterogeneity of the resources is also taken into account. 
This framework can support any type of application because it is going to use intelligent 
wrappers for a particular type of application. The core components of the framework will 
be the same for different kinds of application. The difference lies in the stage at which the 
particular application gets executed. The reason this kind of an approach is taken is 
because, for a particular type of application, there maybe special kinds of files that have 
to be created before the application can run. This is specific to that particular application 
and need not be part of the core components in the framework. Hence the application is 
enclosed by an intelligent wrapper script written specifically for that particular 
application and then it is executed. This is the key feature that enables the framework to 
support any kind of application. The other important design criteria are as follows: 
 
 

• Keep processors busy 
• Minimize bandwidth requirements, avoiding strategies where requirements scale 

with the number of researchers times the number of input files 
• Optimize cache resources to facilitate future processing needs 
• Use scalable control techniques 
• Applicable to multiple experiments 
• Extend easily to future platforms and grid technologies 
• Handle all known types of jobs 
• Provide for both sharable and private resources 
• Provide guidelines for job design that promote efficient use of a distributed 

environment, but accept legacy code that does not yet meet those guidelines 
 
 
 
 

Design Approach 
 
• The core scheduling algorithm is centralized, other processes are distributed.  

Scalability is achieved by supporting this core logic with multiple discovery and 
disposition processes as needed. 

• A single control cluster and set of databases (per experiment) is used for the bulk of 
the control processes.  The databases will mirror the status of the grid itself, with 
some latency. 

• Part of the control software is custom-written for each experiment, and part would be 
the same for all experiments that use this approach.  The intent is to confine job-
dependent processing to custom written modules, and allow the main control software 
to be unfettered by such considerations. 

• Processing daemons play a significant part for tasks such as monitoring, discovery, 
and  mirroring 

• A custom package wrapper is used to incorporate intelligence at the running job level 



• Grid processing is most efficient when binaries can be run in parallel with small 
output that can be forwarded, but can still be done even if that is not possible. 

• Any routine forwarding of large output files is discouraged in order to conserve 
bandwidth.  At the least, a private cache should be the target of the forwarding so that 
it happens infrequently. 

• Actual grid protocols (such as Globus) are wrapped to provide a measure of 
independence and flexibility for the control software itself, and only basic services 
are needed so that there is a high probability that any future grid tool can be used in 
the grid fabric. 

• Software versioning is assumed, to provide unambiguous specification of what the 
job is 

• A typical node in the grid requires communication mainly with the control cluster, 
which in turn communicates with all other nodes and the researcher’s desktop.    
Occasional access to other nodes is required to pull files for replication (and then the 
other node’s URL is known so there is no discovery process needed). 
• Put an intelligent wrapper around each running job segment: 
Monitors the binary itself.  Responds to control commands and inquiries.  Performs 
pre- and post-job processing  (pulling software, forwarding output). 
• Use custom-written versions of specific components: 
Specifically, job creation and job wrapper tasks each have built-in experiment 
knowledge.  Isolating job vagarities will reduce the complexity of the overall system 
and thus coding time.  Custom code allows end users to control many aspects of the 
job, especially job creation. 

• Design to require only the minimum set of grid protocols and tools: 
Namely, file transport and process launching are all that is asked of the grid 
primitives, and proposed protocols for these functions will be embraced.  Thus, 
heterogeneous grid tools can be simultaneously implemented (e.g., Globus and 
SAM). 

• Separate the functions of file selection and file location: 
File selection is expected to be experiment-dependent and use existing catalogues, 
accessed by custom-written code.  File location is handled by a new database, 
accessed by the new control software. 

• Simplify assumptions about job characteristics: 
Use cases so far encountered appear to need only linear chaining, mainline splitting, 
and mainline merging . 

 
 
 
 
 
 
 
 
 



 Modules in the Proposed Framework: 
 
 The framework consists of five core modules which will give the functionality to 
support any kind of data-intensive application. The five modules in the framework are as 
follows: 
 

• Job Creation  
• Pre-Scheduler  
• Resource Monitoring Service (RMS) 
• Scheduler 
• Dispatcher 
 

 The various modules in the framework communicate with each other. They make 
use of a a set of databases for accessing necessary information that will enable in the 
successful performance of the framework. The databases are as follows: 
 

1. Researcher  
2. Cluster  
3. Node  
4. File Location  
5. Job  
6. RMSInfo 
7. Thread 
 

The overall operation of the modules in the framework is shown along with the  
databases in fig 1. in the following page. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fig.1 
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The modular design with respect to the scheduler will eliminate the overhead on the 
scheduler. Since the pre-scheduler does many tasks before the scheduler executes, the 
workload on the scheduler is significantly reduced.  The pre-scheduler also takes care of 
splitting the job request into different threads of execution. It updates the thread 
information in the thread database and stores the job request in the job database using a 
unique i.d. Only the scheduler has an overall view of the system with the aid of the 
RMSInfo database. Therefore, by moving many of the scheduling decisions that do not 
require an overall view to the pre-scheduler, we reduce the workload for the scheduler. 
The RMS will query the resources for system information and will store it in the 
RMSInfo database. The RMS will do this task at regular intervals. Therefore the 
scheduler will have the latest information about the system. The scheduler scans the 
thread database to make the scheduling decisions. Once it decides the target node for a 
thread, it will change the state of the thread to to-be-executed. The distribute daemon will 
scan the thread database to check for threads that are ready to be executed. Once it finds a 
thread that is ready to be executed, it will move the files required for execution to the 
target node using a wrapper script. It also has a wrapper around the thread to execute it 
and a wrapper to collect the results and send it back to the researcher or to a desired 
location. So the wrapper moves the files to the target node and executes the thread. The 
reason for letting the job itself gather the results is because if we have a separate daemon 
to do the task of gathering the results, it will create a bottleneck. 
 
Communication Methods 

For the grid to function, processes must be able to send and receive files between 
nodes (FTP-like capability) and launch tasks on other nodes (RPC-like capability).  All 
control and application functions that are about to be described can be implemented with 
just these two capabilities.  In order to meet the stated criteria of extensiblity to future 
grid platforms, this design requires that there be a software wrapper around each grid 
primitive that may be actually used to provide the FTP and RPC services.  For example, if 
Globus is used for the frabric on a set of nodes on the grid, then instead of invoking 
Globus tools and functions directly, all control software described in this design will 
instead invoke a wrapper function that in turn implements a standard protocol to perform 
FTP and RPC tasks.  There are several implications of this approach: 

 

• We do not require that the entire grid be a Globus grid, or any other specific fabric: 
The grid may now, or in the future, have clusters that use different fundamental 
protocols for transport and security.  This is nothing more than a good OO practice: 
implementing a new grid protocol would simply require writing and testing the proper 
wrapper functions.  (If the grid were to consist of mixed protocols, it would likely be 
possible to implement gateway machines in a manner that is transparent to the control 
software).   

• It is in the design stage (now) that this decision must be made, so that control 
software can be written to use just an FTP and an RPC capability: 
This design essentially requires a lowest common denominator approach to actual 
grid access, so that the large amount of control software now being written can be 
easily extended in the future even if a different grid protocol is to be incorporated.  



Any reliance at this point on a “special feature” of any particular grid tool would 
reduce the chance of easy future extension. 

• This will make it easier to interface with existing data transport functions such as 
SAM: 
SAM would be invoked whenever a master copy of a file must be extracted from the 
tape robot (but only to place the copy onto a local disk cache).  This is simply a case 
where an FTP-like service is needed, but the fundamental protocol is not Globus.  The 
control software would simply request the file transport, and wrapper functions would 
handle the details.  To implement, one would place Globus on the SAM clusters to 
forward the disk file.  Although difficult in implementation, it appears to the control 
software to be a simple FTP service. 

 

Job Creation 
 The job creation program will be a web-interface. When a researcher wants to 
submit a job to the grid, he will go to the web-interface to submit the job. The web-
interface will provide the researcher with all the necessary information to construct the 
job. It will display a catalogue of files to the researcher and he can choose the type of 
application he wants to run. The researcher can also specify the parameters if any and 
also if the application has a special parameter file, he will be allowed to specify it. The 
researcher will also be given the option of choosing the cluster in which he would like his 
application to run. But the researcher can choose only the cluster to which he is 
authorized to use. Otherwise he will be denied access. The web-interface is the job 
creation program. It will take all the information provided by the researcher and will 
create the job. The job will be described by a Job Definition Language (JDL). The JDL is 
the standard that is used to describe the different components in the job. The different 
components are the different binary files that have to executed, the parameters for the job, 
the different parameter files if any, input files and the output files, the credentials of the 
researcher who submitted the job and so on. The job creation program will generate the 
JDL file for a particular job and it will place it in the JDL file queue that is visible to the 
Pre-scheduler. Hence the output of the job creation program is the JDL file.  
 The job creation program will run on the researcher desktop and will access the 
different databases in the system. A custom job creation program will be written for each 
application. So this custom job creation program will be able to identify the necessary 
files that are required for that application and will provide it to the researcher as a 
catalogue from which he can choose. Some job creation programs will focus mainly on 
listing the input files that a researcher needs to select from so that he can create a new 
job. Other job creation programs might concentrate on displaying the cluster information 
along with the files present in the cluster, so that the researcher can efficiently select the 
files and the target cluster. The job creation program should provide template for the 
researcher to create new jobs. It should also be able to clone new jobs by looking up jobs 
that are archived in the job database that are stored permanently. These are the primary 
tasks of the job creation program and its primary output is the JDL file describing a 
particular job. 
 
 



Pre-Scheduler  
 
 The task of the pre-scheduler is to parse the Job Description Language (JDL) file 
and make as many scheduling decisions as possible that do not require a global view. 
This will reduce the amount of work the scheduler has to do. The JDL file is the output of 
the job-creation program that runs at the researcher’s desktop. The JDL file is written to a 
JDL file queue that is periodically scanned by the pre-scheduler. The pre-scheduler will 
perform its functions on the JDL file and then send a result back either accepting or 
rejecting the job request. The pre-scheduler will also generate a unique job i.d. and return 
it along with accept or reject reply. This number will be used by the researcher for 
making queries about the job. The pre-scheduler will maintain the last unique i.d. it 
generated. The pre-scheduler will also store the JDL file in a job database. It is also 
responsible for breaking down the job request into multiple phases and threads. It updates 
the thread database with this info. 
 

Tasks of the Pre-Scheduler: 
 

§ Parse the JDL file 
§ Make a list of input files 
§ Make a list of output files 
§ Make a list of binaries to be run including the version 
§ Contact the Location database and verify the specified files are present 
§ Contact the Cluster database to verify the clusters specified in the JDL file 
§ Contact the Node database to verify the nodes 
§ Contact the Researcher database to authenticate the identity of the researcher 
§ Once the verifications are done, either accept or reject the job request 
§ From the JDL file determine the DAG that might exist in the job request, or 
§ If the DAG is already specified in the JDL file, then use it 
§ Add the job in the Job database or the distribute queue and mark it to be 

scheduled 
§ Generate a unique i.d. for the job 
§ Scan the directory where the JDL file is placed at specified intervals, or 
§ Provide an API, which the Job-submit program can call so that it can invoke 

the pre-scheduler every time a request arrive 
§ Update the job database. 
§ Break the job request into phases and threads. 
§ Update the thread database 
§  

Jobs that are not input-dependent would already know the target nodes because they 
were determined during job creation.  For input-dependent jobs, pre-scheduling includes 
a discovery of every location of every needed input file (accessing the Location 
Catalogue) which provides a list of clusters that already have the input file present.  The 
pre-scheduler attempts to apply as many scheduling rules as it can without having to 
know anything about the present global state of the grid.  For example, a job might have 
been forced by policy to run on a specific private cluster, hence the pre-scheduler will 
have to put all packages onto the designated cluster. Certainly, only those clusters with 



the proper OS profile (Platform ID) are to be considered.  Basically, the pre-scheduler 
attempts to eliminate as many cluster options as it can, so that whatever is left is 
essentially an optimization decision that is best left to a single process with a global view.  
Thus, it will prepare a list of candidate packages that could be sent out to accomplish the 
processing of a given package, and assign a cost to each.  Cost might consist of a certain 
amount of data transport, a certain amount of re-processing to create the needed input file 
at some cluster, and so forth.  The pre-scheduler passes the job onto the scheduler by 
changing the job’s status to “to be scheduled”. 

 
Resource Monitoring Service (RMS) 
 
 The Resource Monitoring Service is used to keep track of the system information 
of each of the resource in the grid. System information refers to the number of jobs 
running on a resource, the CPU speed, the main memory available, the cache available 
etc. These system level information is required for the scheduler to make decisions 
regarding assigning the jobs to a particular resource. This has to be made available to the 
scheduler because it has to know the global state of the grid before it makes any 
scheduling decisions. If the scheduler were to check the state of each resource before it 
made a scheduling decision, it will be a very time consuming task and will be practically 
infeasible. Hence we have a module called the Resource Monitoring Service (RMS) 
which does the task of keeping track of the system level information. This module will 
periodically scan the grid to check for system changes. This module will also be notified 
by certain other components in the framework about system changes. 
 The RMS will provide the RMSInfo database to the scheduler. This database will 
contain the system level information for the resources in the gird at a given point in time. 
The RMS will update this database with all the changes in the system state from time to 
time. The reason for having the RMSInfo database is because of efficiency reasons. If the 
scheduler were to query the RMS for system information for every scheduling decision it 
has to make, it will be a very slow process and the scheduler cannot make that many 
scheduling decisions. Since the RMS is going to constantly update the RMSInfo database 
with the system level information for each of the resource in the grid, the scheduler will 
make use of this database to get information for its scheduling decisions. Since the 
information contained in the RMSInfo database gives a global view of the grid, it will 
help the scheduler in making its decisions. This is the primary function of the RMS 
module. The RMS will not update the RMSInfo database for every single change in state 
of the system. It will update the RMSInfo database only when there is a significant 
change in the state of the system. The RMS module greatly reduces the overhead on the 
scheduler and lets the scheduler concentrate on finding the best resource for a particular 
application and not worry about finding the state of the whole system.  
 
        Tasks of RMS: 
 

• Maintain system information 
• Update RMSInfo database if there is significant change in system information 

 
 



Scheduler  
There is a single core job scheduling process for the entire experiment.  Having a 

global view, it examines the jobs needing scheduling in priority sequence and makes 
optimization decisions from the candidates that the pre-scheduler processes provided.  
Then the actual launch of each package is left to the job distribution processes. The 
design calls for the load on the core scheduler itself to be light enough that it will not 
become a bottleneck.    
 Once the pre-scheduling stage has completed, the threads are placed in the 
distribute queue or the thread database. At this point it is the duty of the scheduler to 
assign it to the appropriate cluster using its global view. The scheduler will read RMSinfo 
to get system information and then make the decisions. Once the scheduler has arrived at 
the decisions based on the system information and various priorities, it will place the 
thread in a state where it has to be distributed to the target cluster. The distribute daemon 
performs this task. 

 
Tasks of the Scheduler: 
   
§ Process one of the thread that have been marked to-be-scheduled 
§ Read RMSInfo to get the system information about the various nodes in the 

different clusters 
§ No CPU should be neglected 
§ Cache purging should be minimized, because purged files might be used again 
§ Commonly used files should be replicated in many locations so that the options 

for processing are increased 
§ Mark the thread as to-be-distributed once a target resource has been selected 
§ Will schedule a thread with a parent only when the parent has completed 

successfully. 
§ If the parent thread has failed, then the scheduler will remove all the threads down 

the hierarchy.  
 
Distribute Daemon  

 
 The distribute daemon will scan the thread database and will distribute the thread 
marked as to-be-distributed to the target node once the target node becomes available. 
The distribute daemon will also handle the job of moving the files across from the 
central repository, including the intermediate input files. In practice this task will be 
taken care of by a wrapper script for that particular thread. There is also a wrapper 
script present to execute the thread. Once the thread completes its execution, the 
results are gathered by another wrapper script. The threads are not removed from the 
area of execution unless the researcher makes a request to purge them. But if the 
memory available to hold that thread becomes less, in that case it might be purged or 
moved over to another location and archived. When the job creation program created 
the job description, it would have asked the researcher about the method that has to be 
used to transfer the results. Based on that, the job creation program would have added 
a phase to the job stating what to do after the completion of all the binaries. Based on 
that, the results of the different phases will be operated upon. 



 
  
Tasks of the Distribute Daemon: 
 
§ Scan the thread database for thread that are marked as to-be -distributed 
§ Move the required binaries to their target nodes 
§ Move the input files to the target node of the binary 
§ Once the node becomes available, launch the thread 
§ Update the status of the thread in the thread database. 
 
 

In the following page, fig 2 will give the job flow in the proposed framework. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Job Creation 
Runs on 

Researcher’s 
Desktop 

Selection 
DB 

All Other 
DB’s 

Researcher 

PreScheduler 
Selects candidate 
nodes 

JDL file 
 

Job DB 
Edited, 

Candidates 

All DB’s 
except 

Selection 

Scheduler 
chooses a candidate 

Job DB 

All DB’s 
except 

Selection 

Dispatcher 
launches wrappers 

Package 
Wrapper 1 
and Binary 
On Node A 

Package 
Wrapper 2  
And Binary 
on Node B 

Package 
Wrapper N 
and Binary 
on Node X 

RMS keeps track of 
system information 

 
 



Features  
Scalability: 
 The most important feature of any grid based solution is scalability. Since the grid 
is expanding continuously, the ability of the framework to handle more resources that are 
geographically distributed is very vital for the success of the framework. The proposed 
framework is highly scalable. The two different modules that make this possible are the 
pre-scheduler and the dispatcher. There can be multiple pre-schedulers and dispatchers 
through out the grid. The pre-schedulers themselves can be geographically distributed 
and one pre-scheduler can parse the JDL files in the JDL queue of one particular region. 
The same holds good for the dispatcher too. If more dispatchers are present, then they 
will distribute more threads at any given time. This feature makes it easy to increase the 
load on the grid and still produce a good throughput. The scheduler will not be a 
bottleneck because the workload on the scheduler is greatly reduced by the presence on 
pre-schedulers. 
 
Heterogeneity: 
 In a grid environment, the resources that are present will be of different kinds. 
Each resource might have a different hardware, different operating system running on 
them. So to assume that all the resources in the grid would have the same configuration is 
a grave mistake. This framework assumes that the resources have the minimum of 
configurations available. It doesn’t assume that any custom built software to be present 
on the resources. The use of wrappers in the framework makes this possible. For example 
if a resource has gridftp, in that case, the wrapper function to copy files will make use of 
gridftp. If the resource has only ftp running on it, then in that case, the wrapper will make 
use of ftp. The wrapper scripts are intelligent enough to figure that out. Hence 
heterogeneity of resources can be handled easily using this framework. 
 
Reliability: 
 Reliability is very important in any distributed computing environment. The 
proposed framework makes sure that the system is reliable. The researcher who submits a 
job gets an i.d. for the job that he submitted to the system. The researcher can make use 
of this i.d. to track the status of his jobs. The wrapper scripts that execute a particular job 
are self-contained units. They will execute the binary and will update the thread database 
with the status information. Even if the job fails, the scripts will make sure that the proper 
status information is propagated to the scheduler so that it can take the necessary action. 
Once a binary fails, the wrapper script will catch the result and this is made visible to the 
scheduler. The scheduler will then either reschedule the job, or will discard the job, based 
on the criteria specified while creating the job. 
 
Security: 
 Since the grid involves different organizations who share their resources, it is 
important to establish a certain level of security mechanism. Only authorized people are 
allowed to access the grid. This has to be implemented strictly. Otherwise, malicious 
intruders can cause serious harm to the resources. The framework uses a researcher 
database to keep track of the researchers who are entitled to use the grid. Apart from this, 



the framework calls for the use of GSI for authentication. This will make the system very 
secure. 
 
Conclusion: 
 In this paper we have proposed a framework for the control and monitoring of 
grid based data-intensive applications. The paper describes the different areas of 
scientific research that fall under the category of data-intensive application. We have 
briefly looked at the current technologies in grid computing. The paper investigates the 
issues that arise in dealing with data-intensive applications. A detailed description on 
how the proposed framework can solve the problems encountered in managing data-
intensive application is given.  The individual modules in the framework are described in 
great detail. We are currently involved in the development of a prototype for the 
proposed framework for dealing with data-intensive applications in High Energy Physics. 
 


