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Problem 1.10 What is the minimum impaet parameter needed to
deflect 7.TMeV a-particles from gold nucler by at least 1°7 What
about by at least 30°7 What 1s the ratio of probabilities for deflections
of # = 1° relative to @ > 30°7 (See the CRC Handbook for the density
of gold.)

For the scattering of a 7.7 MeV a-particle from gold, we have

Z=2 Z'=79, E=T7MeV, (1.74)
so that we obtain
1] 2
25 _ gyl g
E 2E  he

197 MeV — F 7 1
2 x 7.7 MeV 137

2145 x 107 ¥ em =~ 1.4 x 1072 em. (1.75)

=2xTOx

We know from Eq. (1.32) of the text that

Z7'e* @ .
b= Tmt E, {I.Th}
which leads to

b@#) = 1.4 x 1072 cot g cin. (1.77)

We note that for

n 1
=1"= — = — 5 1.78
=1 0 m«il (1.78)



we have

6 8 1 ] 1
L. DI S\ 0. .. 1.79
tang = 5~ om0t g tangﬂﬂi'ﬂ (1.79)
Similarly, for
x 1
H—EUD—EME (1.80)
we have
g ¢ 1 8 1
- f5 =0 = — = —— =4, 1.81
an, ®3Ep g tan § N
Using these values in (1.77), we obtain
— 19 pe —12 il =10
b =1°~14x10"" x 120cm = 1.7 x 107" em, (1.82)

b(# = 30°) = 1.4 x 107" x 4em = 5.6 x 102 cm.

As we have already seen in Problem 1.1, the probability of scat-
tering for angles greater than #, goes as the area mh*. Therefore,
using (1.82) we have

a8>19)  BO=1)
o(0 > 30°) B30 = 30°)

17 x 1010\ *

In other words, there will be approximately 900 more particle colli-
sions for @ > 1° than for @ > 30°.
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we have
8 0 1 é
MYV my Ctpegae 0w
Similarly, for
§=30°=" o 1 (1.80)
6 2 )
we have
6 o0 1 0 1
- R - - —_ = ~ 4. 1.81
tang Mo~ oty tan (1.81)

Using these values in (1.77), we obtain

b(6 = 1°) ~ 1.4 x 1012 x 120¢cm = 1.7 x 10~10 cm,

b(0 =30°) ~ 1.4 x 10712 x 4¢cm = 56 x 10~ 12¢m. (1.82)

As we have already seen in Problem 1.1, the probability of scat-
tering for angles greater than 0» goes as the area 7b2. Therefore,
using (1.82) we have

o(60>1°) b} 6=1°)
o(6 > 30°) ~ b2(8 = 30°)
N (1.7 x 10~10

“\5.6 x 10-12

)2 =~ 900. (1.83)

In other words, there will be approximately 900 more particle colli-
sions for § > 1° than for § > 30°.

Problem 1.11 Consider o collimated source of 8 MeV a-particles
that provides 10* a /sec that tmpinge on a 0.1mm gold foil. What
counting rate would you ezpect in a detector that subtends an annu-
lar cone of A9 = 0.05 rud, at a scattering angle of 8 = 90°? Compare
this to the rate at 0 = 5°. Is there q problem? Is it serious (see Prob-
lem 1.12). (Hint: You can use the small-angle approzimation where
appropriate. and find the density of gold in the CRC Handbook.)
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For scattering of 8 MeV a particles from gold, we have

Z=2, Z'=79, E-= 8MeV,
p = density of gold ~ 19.3 g/cm?,
t = Thickness of gold foil = 0.1 mm = 102 cm,
No = Incident flux = 104 /sec, (1.84)
A = Atomic weight of gold = 197,
Ap = Avogadro’s number = § x 10% /mole,
Af = Angle subtended by the detector = 0.05rad.

We can therefore calculate
do z2z'e\* e |
d-ﬁ(t?)-( iB ) cosec E(sr)

2\ 2
= (ZZ’ x % X fhz) cosec4g(sr)—l

197 MeV —F 1 \* 49( =
4x8MeV ~ 137) °o%eC jler

= (2 X 79 x 5
~ 0.48 x 10~ cosect —g—ch/sr. (1.85)

Similarly, we have

Aopt 6 x 10% x 19.3 x 102 /cm?
A " 197

~ 6 x 10%° /cm?. (1.86)
From Eq. (1.40) of the text we therefore obtain the counting rate

dn(9) = NO% (‘;—S(o) dn

~ 10 /sec x 6x 10 /cm? x 0.48 x 10~ cosec? gcm2/sr x d

= 2.88 cosec“g dQ(sec —sr)~ 1. (1.87)
For scattering with azimuthal symmetry, we can write
df) = 2w sin9de, (1.88)
and if we identify d ~ A§ = 0.05rad, we get ‘
d§2 ~ 27 sin @ x 0.05sr ~ 0.3sin fsr. (1.89)
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Putting this back into (1.87), we obtain

dn(f) ~ 2.88 cosec? g (sec —sr)™! x 0.3sin 0 s

~ 0.86 sin 9cosec4g (sec)™L. (1.90)
It follows that 7
dn( = g) = 0.86 x 1 x (V2)* ~ 3.4/sec. (1.91)
On the other hand, for § = 5° = e R —113 < 1, we have
, 1 40 [2\* 4
sinf ~ @ ~ ﬁ, cosec 5 ~ (5) ~ (24) , (1.92)

and we obtain
dn(f = 5°) ~ 0.86 x % X (24)!/sec ~ 2.4 x 10%/sec.  (1.93)

This is, in fact, larger than the incident flux, and, if this were
true, conservation of probability (particle number) would be vio-
lated, which is a serious problem! For one thing, we note that
the approximation

d ~ A9, (1.94)
is meaningful only when

Al

7 <1, (1.95)

which is clearly violated when A = 0.05 rad and 6 = 5° ~ L~
0.08 rad. This is one of the sources of the difficulty. For other sources
of this error, we turn to the solution of the next problem.

Problem 1.12 Consider the expression Eq. (1.41) for Rutherford
Scattering of a-particles from gold nuclei. Integrate this over all
angles to obtain n. In principle, n cannot exceed Ny, the num-
ber of incident particles. Why?! What cutoff volue for 6 would be
required in the integral, that is, some 6 = G > 0, to assure that
n does not exceed Ny in Problem 1.47 (Hint: After integrating, use
the small-angle approzimation to simplify the calculation.) Using the
Heisenberg uncertainty principle Ap,Az =~ h, where Az is some



