PHYS 3446 – Lecture #10

Thursday, Feb 26, 2015 Dr. **Brandt**

• Early Nuclear models

Nuclear Models: Liquid Droplet Model

- This was the earliest phenomenological model and had success in describing the binding energy of a nucleus
- Nucleus is essentially spherical with radius proportional to A^{1/3}.
 - Densities are independent of the number of nucleons
- Led to a model that envisions the nucleus as an incompressible liquid droplet
 - In this model, nucleons are equivalent to molecules
- Quantum properties of individual nucleons are ignored

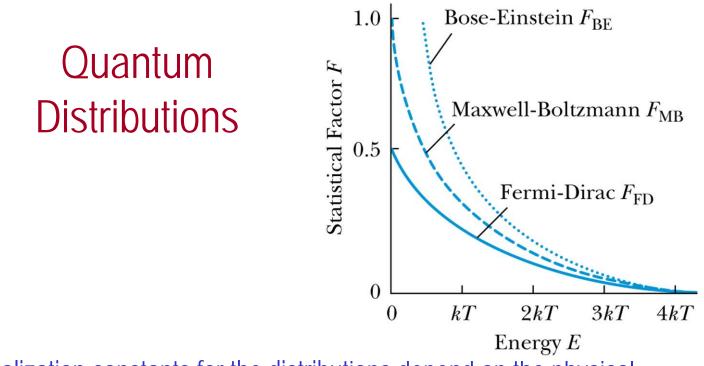
Nuclear Models: Liquid Droplet Model

- This was the earliest phenomenological model and had success in describing the binding energy of a nucleus
- Led to a model that envisions the nucleus as an incompressible liquid droplet
- Quantum properties of individual nucleons are ignored
- An early attempt to incorporate quantum effects
- Assumes nucleus as a gas of free protons and neutrons confined to the nuclear volume

Nuclear Models: Fermi Gas Model

- An early attempt to incorporate quantum effects
- Assumes nucleus as a gas of free protons and neutrons confined to the nuclear volume
 - The nucleons occupy quantized (discrete) energy levels
 - Nucleons are moving inside a spherically symmetric well with the range determined by the radius of the nucleus
 - Depth of the well is adjusted to obtain correct binding energy

Nuclear Models: Fermi Gas Model


- Nucleons are Fermions (spin ½ particles) so
 - Obey Pauli exclusion principle
 - Any given energy level can be occupied by at most two identical nucleons – opposite spin projections
- For greater stability, the energy levels fill up from the bottom to the Fermi level
 - Fermi level: Highest, fully occupied energy level (E_F)
- Binding energies are given as follows:
 - BE of the last nucleon= E_F since no fermions above E_F

Classical and Quantum Distributions

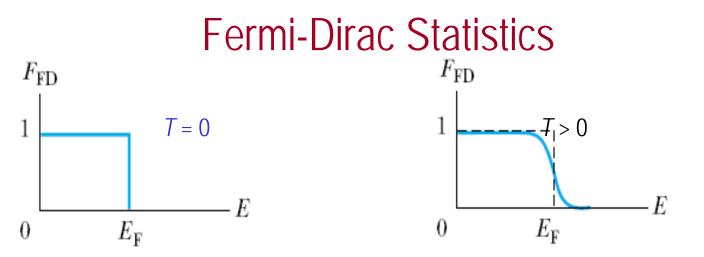
Table 9.2 Classical and Quantum Distributions

Distributors	Properties of the Distribution	Examples	Distribution Function
Maxwell- Boltzmann	Particles are identical but distinguishable	Ideal gases	$F_{\rm MB} = A \exp\left(-\beta E\right)$
Bose-Einstein	Particles are identical and indistinguishable with integer spin	Liquid ⁴ He, photons	$F_{\rm BE} = \frac{1}{B_2 \exp(\beta E) - 1}$
Fermi-Dirac	Particles are identical and indistinguishable with half-integer spin	Electron gas	$F_{\rm FD} = \frac{1}{B_1 \exp\left(\beta E\right) + 1}$

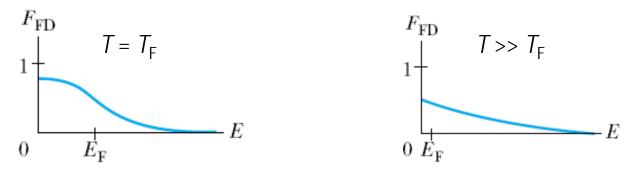
- The normalization constants for the distributions depend on the physical system being considered.
- Because bosons do not obey the Pauli exclusion principle, more bosons can fill lower energy states.
- Three graphs converge at high energies the classical limit.
 - → Maxwell-Boltzmann statistics may be used in the classical limit.

Fermi-Dirac Statistics

$$F_{\rm FD} = \frac{1}{\exp(\beta(E - E_{\rm F})) + 1}$$

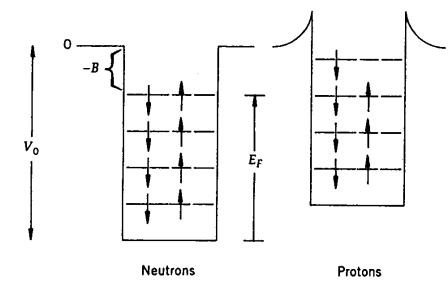

- $E_{\rm F}$ is called the **Fermi energy**.
- When $E = E_F$, the exponential term is 1.

$$\longrightarrow$$
 $F_{\rm FD} = \frac{1}{2}$


• In the limit as $T \rightarrow 0$,

$$F_{\rm FD} = \begin{cases} 1 & \text{for } E < E_{\rm F} \\ 0 & \text{for } E > E_{\rm F} \end{cases}$$

- At T = 0, fermions occupy the lowest energy levels.
- Near T = 0, there is little chance that thermal agitation will kick a fermion to an energy greater than $E_{\rm F}$.


- As the temperature increases from T = 0, the Fermi-Dirac factor "smears out".
- Fermi temperature, defined as $T_F \equiv E_F / k$.

• When $T >> T_{F'}$, F_{FD} approaches a decaying exponential.

Nuclear Models: Fermi Gas Model

- Experimental observations show BE is charge independent
- If the well depth is the same for p and n, BE for the last nucleon would be charge dependent for heavy nuclei (Why?)
 - Since there are more neutrons than protons, neutrons would have higher E_F
- $E_{\rm F}$ must be the same for protons and neutrons. How do we make this happen?
 - Make protons move to a shallower potential well
- What happens if this weren't the case?
 - Nucleus would be unstable
 - All neutrons at higher energy levels would undergo a β-decay and transition to lower proton levels

3/4/2015

Atomic Shell Model Review

- Orbits and energy levels an electron can occupy are labeled by
 - Principle quantum number: n
 - *n* can only be integer
 - For given n, energy degenerate orbital angular momentum: $\boldsymbol{\ell}$
 - The values are given from 0 to n 1 for each n
 - For any given orbital angular momentum, there are (2*t*+1) sub-states: m_{ℓ}
 - $m_l = -l, -l+1, \ldots, 0, 1, \ldots, l-l, l$
 - Due to rotational symmetry of the Coulomb potential, all these sub-states are degenerate in energy
 - Since electrons are fermions w/ intrinsic spin angular momentum $\,\hbar/2$,
 - Each of the sub-states can be occupied by two electrons
 - So the total number of state is 2(2*l*+1)

Nuclear Models: Shell Model

- Nuclei are observed to have magic numbers just like inert atoms
 - Atoms: Z=2, 10, 18, 36, 54
 - Nuclei: N=2, 8, 20, 28, 50, 82, and 126 and Z=2, 8, 20, 28, 50, and 82
 - Magic Nuclei: Nuclei with either N or Z a magic number \rightarrow Stable
 - Doubly magic nuclei: Nuclei with both N and Z magic numbers → Particularly stable
- Could explain the stability of nucleus—but can we obtain these magic numbers with a simple model?