PHYS 3446 – Lecture #12

Tuesday, March 17, 2012 Dr. **Brandt**

- Beta Decay
- Neutrinos

End-point

Tmax

Nuclear Radiation: β-Decays

- Initially assumed to be 2-body decay ${}^{A}X^{Z} \rightarrow {}^{A}Y^{Z+1} + e^{-}$
- From energy conservation

$$E_X = E_Y + E_{e^-} = E_Y + T_e + m_e c^2$$

• Electron carries most of the KE since it is light (low mass) $T_e = (E_X - E_Y - m_e c^2) = (m_X - m_Y - m_e)c^2 \rightarrow T_Y = Q - T_Y \approx Q$

n(E)

- This results in a prediction of a <u>unique Q value</u> as in α-decay.
- In reality, electrons emitted with continuous E spectrum with an endpoint given by the formula above

Energy conservation is (seems to be) violated!!!! ectron Energy

Nuclear Radiation: β-Decays

- What about angular momentum?
- In β -decays total number of nucleons is conserved – Recall $|\Delta A|=0$ and $|\Delta Z|=1$ in β -decays
- Electrons are fermions with spin $\hbar/2$
- Independent of any changes of an integer orbital angular momentum, the total angular momentum cannot be conserved
 - How much will it always differ by? $\hbar/2$
- Angular momentum conservation is (seems to be) violated!!!

Nuclear Radiation: β-Decays

- In 1931 Pauli postulated an additional particle emitted in β -decays to "save" conservation of energy and angular momentum
 - Charge is conserved in β -decays
 - Electrically neutral
 - Maximum energy of electrons is the same as the Q value
 - Massless
 - Must conserve angular momentum
 - Must be a fermion with spin $\hbar/2$
- This particle was called neutrino (by Feynman) and expressed as $\boldsymbol{\nu}$
 - No one had observed this particle in experiments
 - Difficult to detect
 - + First observation of ν_e in 1956, ν_μ in 1962 and ν_τ in 1977 (direct 2000)

Nuclear Radiation: Neutrinos

- Have anti-neutrinos \overline{v} (all particles have anti's)
- Neutrinos and anti-neutrinos are distinguished
 through the spin projection on momentum
 - Helicity is used to distinguish them $H \propto \vec{p} \cdot \vec{s}$
 - Left-handed (spin and momentum opposite direction) anti-electron-neutrinos are produced in β-decays
 - Right-handed electron-neutrinos are produced in positron emission
 - e⁻ is a particle and e⁺ is the anti-particle to e⁻
 - $-v_e$ is a particle and \overline{v}_e is the anti-particle to v_e

β–Decay Reaction Equations with Neutrinos
Electron emission

$$^{A}X^{Z} \rightarrow ^{A}Y^{Z+1} + e^{-} + \overline{v}_{e}$$

Positron emission

$$^{A}X^{Z} \rightarrow ^{A}Y^{Z-1} + e^{+} + V_{e}$$

• Electron capture

0

β -Decays with neutrinos

• If the parent nucleus decays from rest, from the conservation of energy

$$M_{p}c^{2} = T_{D} + M_{D}c^{2} + T_{e^{-}} + m_{e}c^{2} + T_{\overline{v}_{e}} + m_{\overline{v}_{e}}c^{2}$$

- Thus the Q-value of a β -decay can be written $T_D + T_{e^-} + T_{\overline{v}_e} = \left(M_p - M_D - m_e - m_{\overline{v}_e}\right)c^2 = \Delta M c^2 = Q$
- Electron emission can only occur if Q>0
- Neglecting all small atomic BE, e emission can occur if

$$Q = \left(M\left(A,Z\right) - M\left(A,Z+1\right) - m_e - m_{\overline{v}_e} \right) c^2$$

$$\approx \left(M\left(A,Z\right) - M\left(A,Z+1\right) \right) c^2 \ge 0$$

Tuesday March 17, 2015

PHYS 3446, Andrew Brandt

β -Decays with neutrinos

- Since the daughter nucleus is much heavier than e or $\nu,$ the small recoil energy of daughter can be ignored
 - Thus we can obtain $T_{e^-} + T_{\overline{v}_e} \approx Q$
- This means that the energy of the electron is not unique and can be any value in the range $0 \le T_{a^-} \le Q$
 - The maximum the electron K.E. can be is Q
 - This is the reason why the electron energy spectrum is continuous and has an end point (=Q)
- The same applies to the other two β -decays

Particle Numbers

- Baryon numbers: A quantum number assigned to baryons (protons, neutrons...) {proton decay??}
 - Mostly conserved in many interactions (sounds fuzzy, will return to this point later)
 - Baryons: +1
 - Anti-baryons: -1
 - Protons and neutrons are baryons with baryon number +1 each
- Hadrons are strongly interacting particles (all baryons are hadrons, but not vice-versa)
- Baryons consist of three quarks
- Mesons consist of a quark and an anti-quark

Particle Numbers

- Lepton numbers: A quantum number assigned to leptons (electrons, muons, taus and their corresponding neutrinos)
 - Leptons: +1
 - Anti-leptons: -1
 - Must be conserved at all times under SM in each species

Lepton Numbers

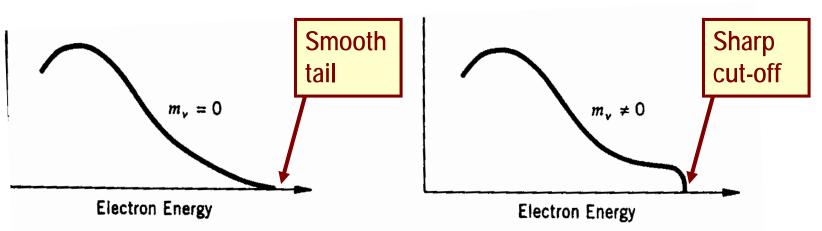
- Three charged leptons exist in nature with their own associated neutrinos $\begin{pmatrix} e^- \\ v_e \end{pmatrix} \begin{pmatrix} \mu^- \\ v_\mu \end{pmatrix} \begin{pmatrix} \tau^- \\ v_\tau \end{pmatrix}$
- These three types of neutrinos are distinct from each other
 - muon neutrinos never produce other leptons than muons or anti-muons

$$\begin{array}{c} \nu_{\mu} + {}^{A}X^{Z} \rightarrow {}^{A}Y^{Z+1} + \mu^{-} \\ \nu_{\mu} + {}^{A}X^{Z} \not \rightarrow {}^{A}Y^{Z+1} + e^{-} \\ \nu_{\mu} + {}^{A}X^{Z} \not \rightarrow {}^{A}Y^{Z+1} + \tau^{-} \end{array}$$

Tuesday March 17, 2015

PHYS 3446, Andrew Brandt

Lepton Numbers For electron neutrinos


$$\begin{split} \nu_e + {}^A X^Z &\longrightarrow {}^A Y^{Z+1} + e^- \\ \nu_e + {}^A X^Z & \not \rightarrow {}^A Y^{Z+1} + \mu^- \\ \nu_e + {}^A X^Z & \not \rightarrow {}^A Y^{Z+1} + \tau^- \end{split}$$

For tau neutrinos

$$\nu_{\tau} + {}^{A}X^{Z} \rightarrow {}^{A}Y^{Z+1} + \tau^{-}$$
$$\nu_{\tau} + {}^{A}X^{Z} \not \rightarrow {}^{A}Y^{Z+1} + e^{-}$$
$$\nu_{\tau} + {}^{A}X^{Z} \not \rightarrow {}^{A}Y^{Z+1} + \mu^{-}$$

Neutrino Mass

• What does neutrino mass do to the β -spectrum?

- The higher end tail shape depends on the mass of the neutrino
 - β -spectrum could be used to measure the mass of neutrinos
 - Very sensitive to the resolution of the device
 - Most stringent direct limit is $m_{\nu} < 2eV/c^2$
- Non-zero mass of the neutrino means
 - Neutrino Oscillation: Mixing of neutrino species

Weak Interactions

• β -decay can be written at the nucleon level as:

 $n \rightarrow p + e^- + \overline{v_e} \qquad p \rightarrow n + e^+ + v_e \qquad p + e^- \rightarrow n + v_e$

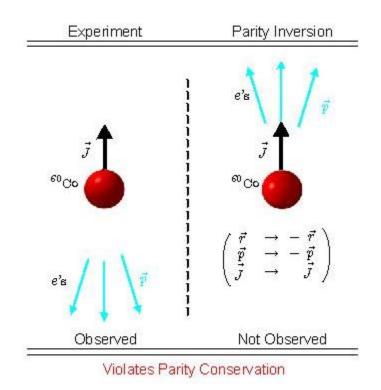
- Since neutrons are heavier than protons, they can decay to a proton in a free space
 - On the other hand, protons are lighter than neutrons therefore they can only undergo a β -decay within a nucleus
 - Life time of a neutron is about 900sec
 - This life time is a lot longer than nuclear reaction time scale 10^{-23} s or EM scale 10^{-16} s.
- This means that a β -decay is a nuclear phenomenon that does not involve strong nuclear or EM forces
- Fermi postulated a new weak force responsible for β decay

Weak Interactions

- Weak forces are short ranged
 - How do we know this?
 - Occurs in the nuclear domain
 - Weakness of the strength is responsible for long life time seen in $\beta\text{-decays}$
- Nucleus does not contain electrons
 - Electrons in β -decays must come from somewhere else
 - Electrons are emitted without time delay
 - The electron must come at the time of decay just like the alphas from a nuclear disintegration
 - β -decay can be considered to be induced by the weak force

Weak Interactions

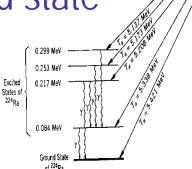
• β-decay can be written at the nucleon level as:


 $n \rightarrow p + e^- + \overline{v_e} \qquad p \rightarrow n + e^+ + v_e \qquad p + e^- \rightarrow n + v_e$

- Fermi postulated a new weak force responsible for β-decay, due to long lifetimes. Strong:EM:Weak:Gravity 1:10⁻²:10⁻⁵:10⁻⁴⁰
- Weak force is relativistic and is also known as four fermion interaction
- Parity:
- A system is parity invariant if it does not change under inversion of spatial coordinates: $\psi(\vec{r}) = \psi(-\vec{r})$ (this was generally assumed to be true)
- The handedness, helicity s·p, should change upon spatial inversion (parity operation) since the direction of motion changes while the spin direction does not $\vec{r} \rightarrow -\vec{r}, \ \vec{p} \rightarrow -\vec{p} \implies \vec{L} = \vec{r} \times \vec{p} = (-\vec{r}) \times (-\vec{p}) = \vec{L}$
- Only left-handed neutrinos and right-handed anti-neutrinos are observed
- Since there are no right handed neutrinos, parity must be violated in weak interactions

Parity Violation

- Lee+Yang, Wu et al
- observed which direction the electrons were emitted
- inverting coordinate gives same spin but now electrons would be emitted in opposite direction (not observed)


Tuesday March 17, 2015

Gamma Decays

Ground State

- When a heavy nuclei undergo alpha and beta decays, the daughter nuclei are often in an excited state
 - Must either break apart
 - Or emit another particle
 - To bring the daughter into its ground state

- Typical energies of photons in γ -decays are a few MeV's
 - These decays are EM interactions thus the life time is on the order of 10⁻¹⁶ sec.
- Photons carry one unit of angular momentum
 - Parity is conserved in this decay