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PHYS 3446 – Lecture #15
Thursday, April 9, 2012

Dr. Brandt

Energy Deposition in Media
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• An  ideal detector would
– Detect particles without affecting them

• Real detectors
– Use electromagnetic interactions of particles with matter

• Ionization of matter by energetic, charged particles
• Ionized electrons can then be accelerated within an electric 

field to produce a detectable electric current
– Particles like neutrinos, which do not interact through EM 

force and have low cross sections, require special 
detection methods

Detecting Particles
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• What do you think is the primary interaction when a charged 
particle is traversing through a medium?
– Interactions with the atomic electrons in the medium

• If the energy of the charged particle is sufficiently high
– It deposits its energy (or loses its energy in matter) by ionizing the 

atoms along its path 
– Or by exciting atoms or molecules to higher states
– What are the differences between the above two methods?

• In the former case you get electrons, for the latter photons
• At high energy both result in EM showers

• If the charged particle is massive, its interactions with atomic 
electrons will not affect the particle’s trajectory

• Sometimes, the particle undergoes nuclear collisions 

Charged Particle Detection

electrons

photons
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• Ionization properties can be described by the stopping 
power variable, S(T)
– Definition: amount of kinetic energy lost by any incident 

object per unit length of the path traversed in the medium
– Referred to as ionization energy loss or energy loss

• T: Kinetic energy of the incident particle
• nion: Number of electron-ion pair formed per unit path length
•  I : The average energy needed to ionize an atom in the 

medium; for large atomic numbers ~10Z eV.

Ionization Process

( )S T = Why negative sign?

The particle’s 
energy decreases.

dT
dx

− = ionn I
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• What do you think the stopping power of a given medium 
depends on?
– Energy of the incident particle
– Electric charge of the incident particle

• Since ionization is an EM process, “easily” calculable
– Bethe-Bloch formula for relativistic particle

– z: Incident particle atomic number
– Z: medium atomic number
– n: number of atoms in unit volume (=ρA0/A)
– m: electron mass

Ionization Process

( )S T = ( )2 2 2 2 2
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2 2

4 2ln
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• Stopping power decreases with increasing particle velocity independent of 
incident particle mass
– Minimum occurs when γβ~3 

• Particle is minimum ionizing when v~0.96c
• For massive particles the minimum occurs at higher momenta

– This is followed by a ln(γβ) relativistic rise (see Beth-Bloch formula)
– Energy loss plateaus at high γβ due to long

Properties of Ionization Process

Plateau due to 
inter-atomic 
screening MIP( Minimum 

Ionizing Particle)

Relativistic 
rise ~ln (γβ)



Projects
1   UA1 Higgs (non) discovery/Carlo Rubbia  Nick Stadler, John Havens, Paul T.
2 Top Discovery CDF/Dzero John Crouch, Matthew Gartman
3 J/Ψ (Charm quark)  Michael Davenport, Charles Knight, Richard Humphries
4 Top Quark at LHC: Kathleen Brackney, David Soward, Kevin Strehl
5  Charged Higgs1 search/discovery:  Ashley Herbst, Anthony Rich
6  Charged Higgs2:  Kelly Claunch, Robert Mathews, Charles Jay
7  Higgs Discovery (ATLAS/CMS):  Raul Dominguez, Peter Hamel, Kennedy
8  B quark Discovery: Garrett Leavitt, Bernard Nuar,  Rajendra Paudel
1) Intro/Theory-what are you looking for and what is it’s signature and background:  

how do you know if you find it
2) Detector-how is detector optimized for the task at hand, trigger/data collection
3) Analysis-operate on the data to accomplish the goals/Conclusion
4)  Grading will include iintermediate milestones
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• At very high energies
– Relativistic rise becomes an energy independent constant rate
– Cannot be used to distinguish particle-types purely using 

ionization
– Except for gaseous media, the stopping power at high 

energies can be approximated by the value at γβ~3 (MIP)
– Ionization loss is very small when the velocity is very small
– Detailed atomic structure becomes important

Ionization Process
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• Once the stopping power is known, we can compute 
the expected range of any particle in the medium
– The distance the incident particle can travel in the medium 

before its kinetic energy runs out

• At low E, two particles with same KE but different mass 
can have very different ranges
– This is why α and β radiation have quite different stopping 

requirements

Ranges of Ionization Process

R =
0

R
dx =∫

0

T

dx dT
dT

=∫ 0 ( )
T dT

S T∫



Thursday April 9, 2015 PHYS 3446 Andrew Brandt 10

• What would be the sensible unit for energy loss?
– MeV/cm
– Equivalent thickness of g/cm2: MeV/(g/cm2)

• Range is expressed in
– cm or g/cm2   (units related through density)

• Minimum value of S(T) for z=1 at γβ=3 is 

• Using B-B formula we can approximate

Units of Energy Loss and Range

min( )S T ≈ ( )23.5  MeV/ g/cmZ
A

review
Ex. 1+2
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• Phenomenological calculations can describe average 
behavior, but large fluctuations are observed on an event-
by-event bases
– This is due to the statistical nature of scattering process

• Statistical effect of angular deviation experienced in 
Rutherford scattering off atomic electrons in the medium
– Consecutive collisions add up in a random fashion and provide 

net deflection of any incident particles from its original path
– Called “Multiple Coulomb Scattering”  Increases as a function 

of path length

• z:particle charge L: material thickness, X0: radiation length of the medium
(distance electron travels before T’=T/e)

Multiple Scattering 

rmsθ ≈
0

20MeV Lz
pc Xβ
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• Energy loss of incident electrons
– Bethe-Bloch formula works well (up to above 1 MeV for electrons)
– But due to the small mass, electron’s energy loss gets complicated

• Relativistic corrections have large effect even down to a few keV level
• Electron projectiles can transfer large fractions of energies to the atomic 

electrons they collide with
– Produce δ-rays (ejected electrons)  Which have the same properties as the 

incident electrons

– Electrons are accelerated as a result of interaction with electric field 
by nucleus.  What does this do?

– Causes electrons to radiate or emit photons
• Bremsstrahlung  Braking radiation (as electron decelerates) an important 

mechanism of relativistic electron energy loss

Energy Loss Through Bremsstrahlung
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• The electron energy loss can be written

• Relative magnitude between Bremsstrahlung and ionization is

• Z: Atomic number of the medium, me: rest mass of the electron, T: Kinetic 
energy of the electron in MeV

• At high energies, ionization loss is constant
– Radiation dominates the energy loss
– The energy loss is directly proportional to incident energy
– T=T0 e-x/X

0  (electrons radiate most of energy within a few radiation 
lengths)

Total Electron Energy Loss

tot

dT
dx

 − = 
 

brem ion

dT dT
dx dx

   − − ≈   
   

ion

dT
dx

 − 
  brem

dT
dx

 + − 
 

21200 e

TZ
m c
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• Above the critical energy (Tc) the brem process 
dominates

Total Electron Energy Loss

brem

dT
dx

  = 
  ion

dT
dx

  = 
  0

cT
X

−

2
0 2170 ( / )AX g cm

Z
≈

radiation length=distance  
electron travels 
before its energy drops to T/e
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• Photons are electrically neutral
– They do not feel Coulomb force
– They cannot directly ionize atoms

• Photons are EM force carriers
– Can interact with matter resulting in ionization
– What are the possible processes?

• Photo-electric effect
• Compton scattering
• Pair production (dominates above 10 MeV)

Photon Energy Loss
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• Reduction of intensity in a medium
• Can be described by an effective absorption 

coefficient µ
– µ reflects the total cross section for interaction
– µ depends on energy or frequency of the incident light

• The intensity of light at any given point through the 
medium, x, is given as

• Half-thickness, the thickness of material such that a 
photon’s intensity is reduced by half:

• µ-1 is the mean free path for absorption

Light Attenuation

( )I x =

1 2x =

0I xe µ−

ln 2
µ

=
0.693

µ
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• What is the minimum energy needed to produce an 
electron-positron pair?
– Twice the rest mass energy of the electron

• The pair production cross section is proportional to Z2

– Z: atomic number of the medium
– Rises rapidly and dominates all energy-loss mechanisms 

for photon energies above 10MeV or so.
– It saturates and can be characterized by a constant mean 

free path for conversion
• A constant absorption coefficient  Electron radiation length of 

medium

Pair Production

hν ≈

pairX =

22 em c = 2 0.511 1.02MeV MeV× =

( ) 1
pairµ

−
≈ 0

9
7

X
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• Total absorption coefficient of photons in a medium can be written as

• The absorption coefficient can be related to the cross section as 

Photon Energy Loss Processes
µ =

µ =

peµ + Compµ + pairµ

0A
A

ρ σ = nσ

Virtually flat!!
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• What are the characteristics of neutrons?
– Constituent of nuclei
– Have the same nucleon number as protons
– Have the same spin as protons
– Electrically neutral  Do not interact through Coulomb force
– Interact through strong nuclear force

• When low energy neutrons interact inelastically
– Nucleus get excited and decay to ground levels through emission of 

photons or other particles
– Such photons or other particles can be detected

Interaction of Neutrons
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– In an elastic scattering of neutrons,  energy loss is  smaller if 
the media’s nucleus is heavy

• Hydrogen-rich paraffin is used to slow down neutrons

• Neutrons produced in reactors and accelerator 
experiments are a potential background concern
– Since normally there are no hydrogen nuclei available for 

kinetic energy absorption
• can be reduced with the use of appropriate moderators

Interaction of Neutrons
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• Hadrons
– All particles interact through the strong nuclear force
– Examples: neutrons, protons, pions, kaons, etc.
– Protons are easy to obtain and can be used with to produce other 

particles
• At low (<2 GeV) energies the cross section for producing 

different particles differs dramatically
– The collision cross sections can have a significant energy dependence
– Nuclear effect is significant

• Above 5 GeV, the total cross section of hadron-hadron 
interaction changes slowly as a function of energy
– Typical size of the cross section is 20 – 40 mb at 70 – 100 GeV
– And increases logarithmically as a function of energy

Interaction of Hadrons at High Energies
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• Hadronic collisions involve very small momentum transfers, 
small production angles and interaction distance of order 1fm

• Typical momentum transfer in hadronic collisions are of the 
order q2 ~ 0.1 (GeV/c)2

• Mean number of particles produced in hadronic collisions grows 
logarithmically as a function of incident energy
– ~3 at 5 GeV
– ~12 at 500 GeV

• High energy hadrons interact with matter, they break apart 
nuclei, produce mesons and other hadrons
– These secondary particles also interact through the strong force

Interaction of Hadrons at High Energies
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• Subatomic particles cannot be seen by the naked eye but can 
be detected through their interactions within matter

• What do you think we need to know first to construct a 
detector?
– What kind of particles do we want to detect?

• Charged particles and neutral particles
– What do we want to measure?

• Momenta
• Trajectories
• Energies
• Origin of interaction (interaction vertex)

– To what precision do we want to measure these quantities?
• Depending on the answers to the above questions we use 

different detection techniques 

Particle Detectors
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Particle Detection

Interaction
Point

electron
photon

jet

muon

This image cannot currently be displayed.

neutrino -- or any non-interacting particle 
missing transverse momentum

Ä B

Scintillating Fiber
Silicon Tracking

Charged Particle Tracks
Calorimeter (dense)

EM hadronic

Energy

Wire Chambers

Ma
gn

et

Muon Tracks

We know x,y starting momenta is zero, but
along the z axis it is not, so many of our 
measurements are in the xy plane, or transverse
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