PHYS 3446 - Lecture \#17

Tuesday, April 16, 2015 Dr. Brandt

- Answered questions on hep vocabulary
- Time-of-Flight
- Bonus for finishing project in April

Projects

1 UA1 Higgs (non) discovery/Carlo Rubbia Nick Stadler, John Havens, Paul T.
2 Top Discovery CDF/Dzero John Crouch, Matthew Gartman
3 J/ Ψ (Charm quark) Michael Davenport, Charles Knight, Richard Humphries
4 Top Quark at LHC: Kathleen Brackney, David Soward, Kevin Strehl
5 Charged Higgs1 search/discovery: Ashley Herbst, Anthony Rich
6 Charged Higgs2: Kelly Claunch, Robert Mathews, Charles Jay
7 Higgs Discovery (ATLAS/CMS): Raul Dominguez, Peter Hamel, Kennedy
8 B quark Discovery: Garrett Leavitt, Bernard Nuar, Rajendra Paudel

1) Intro/Theory-what are you looking for and what is it's signature and background: how do you know if you find it
2) Detector-how is detector optimized for the task at hand, trigger/data collection
3) Analysis-operate on the data to accomplish the goals/Conclusion
4) Grading will include intermediate milestones; outline due next Tuesday 21st

Some PMT's

The Photomultiplier Tube

Photoelectron Trajectories

Thursday April 16, 2015
Electron
Multiplier
Crump Instifate

```
ZuSLAN
ZuSLAN



\section*{Scintillation Detector Structure}


\section*{Time of Flight}
- Scintillator + PMT can provide time resolution of 0.1 ns.
- What position resolution does this correspond to?
- 3cm
- Array of scintillation counters can be used to measure the time of flight (TOF) of particles and obtain their velocities
- What can this be used for?
- To distinguish particles with the similar momentum but with different mass
- How?
- Measure
- the momentum ( \(p\) ) of a particle in the magnetic field
- its time of flight ( t ) for reaching some scintillation counter at a distance L from the point of origin of the particle-this gives the velocity
- from the momentum and velocity of the particle can determine its mass

\section*{Time of Flight (TOF)}
- TOF is the distance traveled divided by the speed of the particle, \(\mathrm{t}=\mathrm{L} / \mathrm{v}\).
- Thus \(\Delta t\) in flight time of the two particle with \(m_{1}\) and \(m_{2}\) is
\[
\Delta t=t_{2}-t_{1}=L\left(\frac{1}{v_{2}}-\frac{1}{v_{1}}\right)=\frac{L}{c}\left(\frac{1}{\beta_{2}}-\frac{1}{\beta_{1}}\right)
\]
- For known momentum, p,
- Since \(\frac{1}{\beta}=\frac{1}{\beta} \times \frac{\gamma m c^{2}}{\gamma m c^{2}}=\frac{\gamma m c^{2}}{\gamma m \beta c \cdot c}=\frac{E}{p c}\)
\[
\Delta t=\frac{L}{c}\left(\frac{E_{2}}{p c}-\frac{E_{1}}{p c}\right)=\frac{L}{p c^{2}}\left[\sqrt{m_{2}^{2} c^{4}+p^{2} c^{2}}-\sqrt{m_{1}^{2} c^{4}+p^{2} c^{2}}\right]
\]
- In non-relativistic limit,
\[
\Delta t=\frac{L}{p}\left(m_{2}-m_{1}\right)=\frac{L}{p} \Delta m
\]
- Mass resolution of \(\sim 1 \%\) is achievable for low energies```

