PHYS 3446 – Lecture #19

Thursday April 23, 2015 Dr. **Brandt**

Accelerators Particle Physics Project

•

Synchroton Accelerators

- For very energetic particles, relativistic effects must be taken into account
- For relativistic energies, the equation of motion of a charge q under magnetic field B is^{*} $\frac{d\vec{v}}{dt} = m\gamma\vec{v}\times\vec{\sigma} = q\frac{\vec{v}\times\vec{B}}{c} \implies \omega = \frac{qB}{\gamma mc}$
- For $v \sim c$, the resonance frequency (v or f) becomes

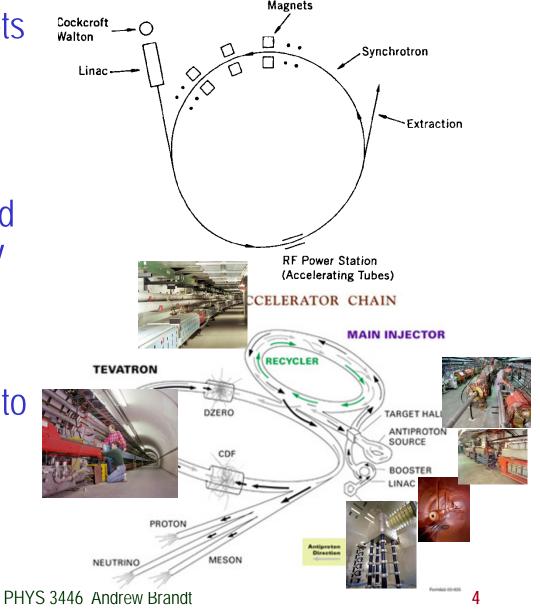
$$f = v = \frac{\varpi}{2\pi} = \frac{1}{2\pi} \left(\frac{q}{m}\right) \frac{1}{\gamma} \frac{B}{c}$$

- Thus for high energies, either B or v should increase
- Machines with constant B but variable v are called synchro-cyclotrons
- Machines with variable B independent of the change of v are called synchrotrons

Thursday April 23, 2015

PHYS 3446 Andrew Brandt

Synchroton Accelerators


- Electron synchrotrons, B varies while \mathbf{v} is held constant
- Proton synchrotrons, both B and ν vary
- For v ~ c, the frequency of motion can be expressed

• with p= γ mc and q=e $R(m) = \frac{pc}{qB} \approx \frac{p(GeV/c)}{0.3B(Tesla))}$

• For magnetic field strength of 2 Tesla, one needs a radius of 50 m to accelerate an electron to 30 GeV/c.

Synchroton Accelerators

- Synchrotons use magnets arranged in a ring-like fashion.
- Multiple stages of accelerations are needed before reaching the GeV scale
- RF power stations are located through the ring to pump electromagnetic energy into the particles

Particle Physics

- What are elementary particles?
 - Particles that make up matter in the universe
 - Cannot be broken into smaller pieces
 - Cannot have extended size
- The notion of "elementary particles" has changed from 1930's through present
 - In the past, people thought protons, neutrons, pions, kaons, pmesons, etc. were elementary particles
- What changed?
 - The increasing energies of accelerators allow the probing of smaller distance scales, revealing sub-structure
- What is the energy needed to probe 0.1 fm?
 - From de Broglie Wavelength, we obtain

$$P = \frac{\hbar}{\lambda} = \frac{\hbar c}{\lambda c} = \frac{197 \text{fm} - MeV}{0.1 \text{fm } c} \approx 2000 MeV/c$$

Forces and Their Relative Strengths

Classical forces:

- Gravitational: every particle is subject to this force, including massless ones
- Electromagnetic: only those with electrical charges
- What are the ranges of these forces?
 - Infinite!!
- What does this tell you?
 - Their force carriers are massless!!
- What are the force carriers of these forces?
 - Gravity: graviton (not seen...yet)
 - Electromagnetism: Photons

Forces and Their Relative Strengths

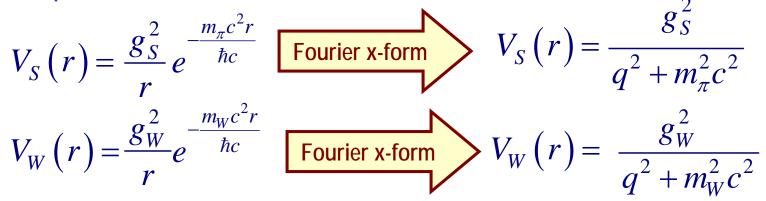
- What other forces?
 - Strong force
 - Holds nucleus together
 - Weak force
 - Responsible for nuclear beta decay
 - What are their ranges?
 - Very short
 - What does this imply?
 - Their force carriers are massive (especially true for weak force)
- All four forces can act at the same time!!!

Relative Strengths of Forces

- The strengths can be obtained from the potential
- Considering two protons separated by a distance r:

Magnitude of Coulomb and gravitational potential are

$$V_{EM}(r) = \frac{e^2}{r}$$
Fourier x-form
$$V_{EM}(r) = \frac{e^2}{q^2}$$


$$V_{g}(r) = \frac{G_N m^2}{r}$$
Fourier x-form
$$V_g(r) = \frac{G_N m^2}{q^2}$$

- q: magnitude of the momentum transfer
- What do you observe?
 - The absolute values of the potential decreases quadrati with increasing momentum transfer
 - The relative strength is independent of momentum transfer

$$\frac{V_{EM}}{V_g} = \frac{e^2}{G_N m^2} = \left(\frac{e^2}{\hbar c}\right) \frac{1}{\left(mc^2\right)^2} \frac{\hbar c^5}{G_N} = \left(\frac{1}{137}\right) \frac{1}{1GeV^2} \frac{10^{39}GeV^2}{6.7} \sim 10^{36}$$

Relative Strengths

Using Yukawa potential form, the magnitudes of strong and weak potential can be written as

- g_W and g_s : coupling constants or effective charges
- m_W and m_{π} : masses of force mediators
- The values of the coupling constants can be estimated from experiments $\frac{g_S^2}{\hbar c} \approx 15$ $\frac{g_W^2}{\hbar c} \approx 0.004$

Relative Strengths

- We could think of π as the strong force mediator w/ $m_{\pi} \approx 140 MeV/c^2$
- From observations of beta decays, $m_W \approx 80 GeV/c^2$
- However there still is an explicit dependence on momentum transfer
 - Since we are considering two protons, we can replace the momentum transfer, q, with the mass of protons

$$q^2c^2 = m_p^2c^4 \approx 1 GeV$$

Relative Strengths

The relative strength between the Strong and EM potentials is

$$\frac{V_S}{V_{EM}} = \frac{g_S^2}{\hbar c} \frac{\hbar c}{e^2} \frac{q^2}{q^2 + m_\pi^2 c^2} = \frac{g_S^2}{\hbar c} \frac{\hbar c}{e^2} \frac{m_p^2 c^4}{m_p^2 c^4 + m_\pi^2 c^2}$$

\$\approx 15 \times 137 \times 1 \approx 2 \times 10^3\$

• And that between EM and weak potentials is

$$\frac{V_{EM}}{V_W} = \frac{e^2}{\hbar c} \frac{\hbar c}{g_W^2} \frac{q^2 + m_W^2 c^2}{q^2} = \frac{e^2}{\hbar c} \frac{\hbar c}{g_W^2} \frac{m_p^2 c^4 + m_W^2 c^2}{m_p^2 c^4}$$
$$\approx \frac{1}{137} \times \frac{1}{0.004} \times 80^2 \approx 1.2 \times 10^4 \qquad \frac{V_S}{V_W} = 2.4 \times 10^7$$

Thursday April 23, 2015

PHYS 3446 Andrew Brandt

Interaction Time

- The ranges of forces also affect interaction time
 - Typical time for Strong interaction ~10⁻²⁴sec
 - What is this?
 - A time that takes light to traverse the size of a proton (~1 fm)
 - Typical time for EM force $\sim 10^{-20} 10^{-16}$ sec
 - Typical time for Weak force $\sim 10^{-13} 10^{-6}$ sec
- The forces have different characteristic energy scales, which are used along with their interaction type to classify elementary particles

Elementary Particles

 Prior to the quark model, all known elementary particles were divided in four groups depending on the nature of their interactions

Particle	Symbol	Range of Mass Values
Photon	γ	$\lesssim 2 imes 10^{-16} \ {\rm eV}/c^2$
Leptons	$e^-,\mu^-, au^-, u_e, u_\mu, u_ au$	$\lesssim 3~{ m eV}/c^2 - 1.777~{ m GeV}/c^2$
Mesons	$\pi^+, \pi^-, \pi^0, K^+, K^-, K^0,$	
	$ ho^+, ho^-, ho^0,\ldots$	$135 \text{ MeV}/c^2 - \text{ few GeV}/c^2$
Baryons	$p, n, \Lambda^0, \Sigma^+, \Sigma^-, \Sigma^0, \Delta^{++},$	
	$\Delta^0, N^{*0}, Y_1^{*+}, \Omega^-, \dots$	938 MeV/ c^2 – few GeV/ c^2

Elementary Particles

- How do these particles interact??
 - All particles, including photons and neutrinos, participate in gravitational interactions
 - Photons can interact electromagnetically with any particles with electric charge
 - All charged leptons participate in both EM and weak interactions
 - Neutral leptons do not have EM couplings
 - All hadrons (Mesons and baryons) responds to the strong force and appear to participate in all the interactions

Bosons, Fermions, and Antiparticles (Oh My)

• Bosons

- All have integer spin angular momentum
- All mesons are bosons
- Fermions
 - All have half-integer spin angular momentum
 - All leptons and baryons are fermions
- All particles have anti-particles
 - What are anti-particles?
 - Particles that have same mass as the normal particle but with opposite quantum numbers
 - What is the anti-particle of
 - A π⁰?
 - A neutron?
 - A K⁰?
 - A Neutrino? Thursday April 23, 2015
 - An electron

PHYS 3446 Andrew Brandt

Elementary Particles: Bosons and Fermions

- All particles can be classified as bosons or fermions
 - Bosons follow Bose-Einstein statistics
 - Quantum mechanical wave function is symmetric under exchange of any pair of bosons
 - $\Psi_B(x_1, x_2, x_3, \dots, x_i, \dots, x_n) = \Psi_B(x_2, x_1, x_3, \dots, x_i, \dots, x_n)$
 - x_i: space-time coordinates and internal quantum numbers of particle i
 - Fermions obey Fermi-Dirac statistics
 - Quantum mechanical wave function is anti-symmetric under exchange of any pair of Fermions

$$\Psi_{F}(x_{1}, x_{2}, x_{3}, \dots, x_{i}, \dots, x_{n}) = -\Psi_{F}(x_{2}, x_{1}, x_{3}, \dots, x_{i}, \dots, x_{n})$$

• Pauli exclusion principle is built into the wave function

- For
$$X_i = X_{j'}$$
 $\Psi_F = -\Psi_F$

Thursday April 23, 2015

Quantum Numbers

- When can an interaction occur?
 - If it is kinematically allowed
 - If it does not violate any recognized conservation laws
 - Eg. A reaction that violates charge conservation will not occur
 - In order to deduce conservation laws, a full theoretical understanding of forces are necessary
- Since we do not have full theory for all the forces
 - Many of general conservation rules for particles are based on experiment
- One easily observed conservation law is lepton number conservation
 - While photon and meson numbers are not conserved

- Baryon Numbers Can the decay $p \rightarrow e^+ + \pi^0$ occur?
 - Kinematically??
 - Yes, proton mass is a lot larger than the sum of the two masses
 - Electrical charge?
 - Yes, it is conserved
- But this decay does not occur ($<10^{40}/sec$)
 - Why?
 - Must be a conservation law that prohibits this decay
 - What could it be?
 - An additive and conserved quantum number, Baryon number (B)
 - All baryons have B=1
 - Anti-baryons? (B=-1)
 - Photons, leptons and mesons have B=0
- Since proton is the lightest baryon, it does not decay.

Lepton Numbers

- Quantum number of leptons
 - All leptons carry $\mathcal{L}=1$ (particles) or $\mathcal{L}=-1$ (antiparticles)
 - Photons or hadrons carry $\mathcal{L}=0$
- Lepton number is a conserved quantity
 - Total lepton number must be conserved
 - Lepton numbers by species must be conserved
 - This is an empirical law necessitated by experimental observation (or lack thereof)
- Consider the decay $e^- + e^- \rightarrow \pi^- + \pi^-$
 - Does this decay process conserve energy and charge?
 - Yes
 - But it hasn't been observed, why?
 - Due to the lepton number conservation

Lepton Number Assignments

Leptons (anti-leptons)	\mathcal{L}_{e}	\mathcal{L}_{μ}	\mathcal{L}_{τ}	$\mathcal{L} = \mathcal{L}_e + \mathcal{L}_\mu + \mathcal{L}_t$
e- (e+)	1 (-1)	0	0	1 (-1)
$v_e \ \left(\overline{v}_e\right)$	1 (-1)	0	0	1 (-1)
$\mu^{-}\left(\mu^{+}\right)$	0	1 (-1)	0	1 (-1)
$\nu_{\mu} \left(\overline{\nu}_{\mu} \right)$	0	1 (-1)	0	1 (-1)
$ au^-\left(au^+ ight)$	0	0	1 (-1)	1 (-1)
$ \nu_{\tau} \left(\overline{\nu}_{\tau} \right) $	0	0	1 (-1)	1 (-1)

Lepton Number Conservation

• Can the following decays occur?

Decays	$\mu^- \to e^- + \gamma$	$\mu^- \rightarrow e^- + e^+ + e^-$	$\mu^- \to e^- + \overline{\nu}_e + \nu_\mu$
\mathcal{L}_{e}	$0 \rightarrow 1 + 0$	$0 \rightarrow 1 - 1 + 1$	$0 \rightarrow 1 - 1 + 0$
\mathcal{L}_{μ}	$1 \rightarrow 0 + 0$	$1 \rightarrow 0 + 0 + 0$	$1 \rightarrow 0 + 0 + 1$
\mathcal{L}_{τ}	$0 \rightarrow 0 + 0$	$0 \rightarrow 0 + 0 + 0$	$0 \rightarrow 0 + 0 + 0$
$\mathcal{L} = \mathcal{L}_e + \mathcal{L}_\mu + \mathcal{L}_\tau$	$1 \rightarrow 1 + 0$	$1 \rightarrow 1 - 1 + 1$	$1 \rightarrow 1 - 1 + 1$

- Case 1: \mathcal{L} is conserved but \mathcal{L}_e and \mathcal{L}_μ not conserved
- Case 2: ${\cal L}$ is conserved but ${\cal L}_e$ and ${\cal L}_\mu$ not conserved
- Case 3: ${\cal L}$ is conserved, and ${\cal L}_e$ and ${\cal L}_\mu$ are also conserved

Thursday April 23, 2015

PHYS 3446 Andrew Brandt total *L* not especially useful

Quantum Number Summary

- Baryon Number
 - An additive and conserved quantum number, Baryon number (B)
 - All baryons have B=1
 - Anti-baryons? (B=-1)
 - Photons, leptons and mesons have B=0
- Lepton Number
 - Quantum number assigned to leptons
 - All leptons carry $\mathcal{L}=1$ (particles) or $\mathcal{L}=-1$ (antiparticles)
 - Photons or hadrons carry $\mathcal{L}=0$
 - Total lepton number must be conserved
 - Lepton numbers by species must be conserved

Thursday April 23, 2015

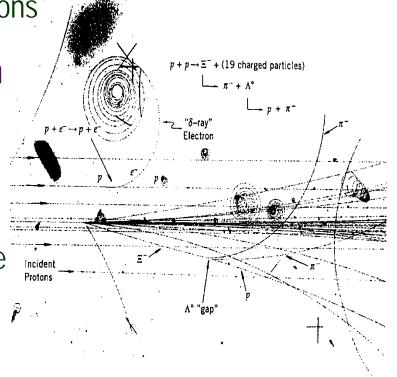
PHYS 3446 Andrew Brandt

- From cosmic ray shower observations
 - K-mesons and Σ and Λ^0 baryons are produced strongly w/ large x-sec
 - But their lifetime typical of weak interactions (~10⁻¹⁰ sec)
 - Are produced in pairs a K with a $\,\Sigma$ or a K with a $\,\Lambda^0$
 - Gave an indication of a new quantum number
- Consider the reaction $\pi^- + p \rightarrow K^0 + \Lambda^0$
 - K^0 and Λ^0 subsequently decay
 - $-\Lambda^0 \rightarrow \pi^- + p$ and $K^0 \rightarrow \pi^+ + \pi^-$
- Observations about Λ^0
 - Always produced w/ K⁰ never with just a π^0
 - Produced with a K⁺ but not with a K⁻

$$\pi^- + p \rightarrow K^+ + \pi^- + \Lambda^0$$

$$\pi^{-} + p \not\rightarrow K^{-} + \pi^{+} + \Lambda^{0} \qquad \pi^{-} + p \not\rightarrow \pi^{-} + \pi^{+} + \Lambda^{0}$$

Thursday April 23, 2015


PHYS 3446 Andrew Brandt

- Further observation of cross section measurements
 - The cross section for reactions $\pi^- + p \rightarrow K^+ + \pi^- + \Lambda^0$ and $\pi^- + p \rightarrow K^0 + \Lambda^0$ with 1GeV/c pion momenta are ~ 1mb
 - Whereas the total pion-proton scattering cross section is ~ 30mb
 - The interactions are strong interactions
- Λ^0 at v~0.1c decays in about 0.3cm
 - Lifetime of Λ^0 baryon is

$$\tau_{\Lambda^0} \approx \frac{0.3cm}{3 \times 10^9 \, cm/s} = 10^{-10} \, \text{sec}$$

• The short/intermediate lifetime of these strange particles indicate weak decay

- Strangeness quantum number
 - Murray Gell-Mann and Abraham Pais proposed a new additive quantum number that are carried by these particles
 - Conserved in strong interactions
 - Violated in weak decays
 - S=0 for all ordinary mesons and baryons as well as photons and leptons
 - For any strong associated-production reaction w/ the initial state S=0, the total strangeness of particles in the final state should add up to 0.

- Based on experimental observations of reactions and w/ an arbitrary choice of S(K⁰)=1, we obtain
 - S(K⁺)=S(K⁰)=1 and $\Sigma(K^-)=\Sigma(\overline{K}^0)=-1$
 - $S(\Lambda^0) = S(\Sigma^+) = S(\Sigma^0) = S(\Sigma^-) = -1$
 - Does this work for the following reactions?

$$- \pi^- + p \to K^+ + \pi^- + \Lambda^0$$

- $\pi^- + p \to K^0 + \Lambda^0$
- For strong production reactions $K^- + p \rightarrow \Xi^- + K^+$ and $\overline{K}^0 + p \rightarrow \Xi^0 + K^+$

- cascade particles $S(\Xi^{-}) = S(\Xi^{0}) = -2$ if $S(\overline{K}^{0}) = S(K^{-}) = -1$

More on Strangeness

Let's look at the reactions again

 $\pi^- + p \to K^0 + \Lambda^0$

- This is a strong interaction
 - Strangeness must be conserved
 - S: 0 + 0 → +1 -1
- How about the decays of the final state particles?
 - $\Lambda^0 \rightarrow \pi^- + p$ and $K^0 \rightarrow \pi^+ + \pi^-$
 - These decays are weak interactions so S is not conserved
 - $-S: -1 \rightarrow 0 + 0 \quad \text{and} \quad +1 \rightarrow 0 + 0$
- A not-really-elegant solution
 - S only conserved in Strong and EM interactions → Unique strangeness quantum numbers cannot be assigned to leptons
- Leads to the hypothesis of strange quarks

Isospin Quantum Number

- Strong force does not depend on the charge of the particle
 - Nuclear properties of protons and neutrons are very similar
 - From the studies of mirror nuclei, the strengths of p-p, p-n and n-n strong interactions are essentially the same
 - If corrected by EM interactions, the x-sec between n-n and p-p are the same
- Since strong force is much stronger than any other forces, we could imagine a new quantum number that applies to all particles
 - Protons and neutrons are two orthogonal mass eigenstates of the same particle like spin up and down states

$$p = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $n = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Thursday April 23, 2015

Isospin Quantum Number

- Protons and neutrons are degenerate in mass because of some symmetry of the strong force
 - Isospin symmetry → Under the strong force these two particles appear identical
 - Presence of Electromagnetic or Weak forces breaks this symmetry, distinguishing p from n
- Isospin works just like spin
 - Protons and neutrons have isospin $\frac{1}{2}$ Isospin doublet
 - Three pions, π +, π and π^0 , have almost the same masses
 - X-sec by these particles are almost the same after correcting for EM effects
 - Strong force does not distinguish these particles \rightarrow Isospin triplet

$$\pi^{+} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \pi^{0} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \text{and} \quad \pi^{-} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Thursday April 23, 2015

Isospin Quantum Number

- This QN is found to be <u>conserved in strong interactions</u>
- But not conserved in EM or Weak interactions
- Isospin no longer used, replaced by quark model

Quantum Numbers

- Baryon Number
 - An additive and conserved quantum number, Baryon number (B)
 - This number is conserved in strong interactions and EM but not necessarily in weak interactions
- Lepton Number
 - Quantum number assigned to leptons
 - Lepton numbers by species and the total lepton numbers must be conserved (EM+EW)
- Strangeness Numbers
 - Conserved in strong interactions
 - But violated in weak interactions
- Isospin Quantum Numbers
 - Conserved in strong interactions
 - But violated in weak and EM interactions Thursday April 23, 2015 PHYS 3446 Andrew Brandt

Quantum Number Conservation

- Some quantum numbers are conserved in strong interactions but not in electromagnetic and weak interactions
 - Inherent reflection of underlying forces
- Understanding conservation or violation of quantum numbers in certain situations is important for formulating quantitative theoretical framework

Weak Interactions

- Three types of weak interactions
 - Hadronic decays: Only hadrons in the final state

$$\Lambda^0 \to \pi^- + p$$

- Semi-leptonic decays: both hadrons and leptons are present

$$n \rightarrow p + e^- + \overline{v}_e$$

- Leptonic decays: only leptons are present

$$\mu^- \rightarrow e^- + \overline{\nu}_e + \nu_\mu$$

Symmetry

- When is a quantum number conserved?
 - When there is an underlying symmetry in the system
 - When the quantum number is not affected by changes in the physical system
- Noether's theorem: If there is a conserved quantity associated with a physical system, there exists an underlying invariance or symmetry principle responsible for this conservation.
- Symmetries provide critical restrictions in formulating theories

Symmetries in Lagrangian Formalism?

- Consider an isolated non-relativistic physical system of two particles interacting through a potential that only depends on the relative distance between them
 - EM and gravitational force
- The total kinetic and potential energies of the system are: $T = \frac{1}{2}m_1\dot{\vec{r}_1}^2 + \frac{1}{2}m_2\dot{\vec{r}_2}^2$ and $V = V(\vec{r_1} - \vec{r_2})$ • The equations of motion are then

$$m_1 \ddot{\vec{r}_1} = -\vec{\nabla}_1 V \left(\vec{r_1} - \vec{r_2}\right) = -\frac{\partial}{\partial \vec{r_1}} V \left(\vec{r_1} - \vec{r_2}\right)$$
$$m_2 \ddot{\vec{r}_2} = -\vec{\nabla}_2 V \left(\vec{r_1} - \vec{r_2}\right) = -\frac{\partial}{\partial \vec{r_2}} V \left(\vec{r_1} - \vec{r_2}\right)$$

where $\frac{\partial}{\partial \vec{r_i}} V(\vec{r_1} - \vec{r_2}) =$ $\hat{x} \frac{\partial}{\partial x_i} V + \hat{y} \frac{\partial}{\partial y_i} V + \hat{z} \frac{\partial}{\partial z_i} V$

Thursday April 23, 2015

PHYS 3446 Andrew Brandt

Symmetries in Lagrangian Formalism 🏄

- If we perform a linear translation of the origin of coordinate system by a constant vector $-\vec{a}$
 - The position vectors of the two particles become

 $\vec{r}_1 \rightarrow \vec{r}_1 - \vec{a}$ $\vec{r}_2 \rightarrow \vec{r}_2 - \vec{a}$

- But the equations of motion do not change since $-\vec{a}$ is a constant vector
- This is due to the invariance of the potential V under the translation

$$V' = V(\vec{r}_{1} - \vec{r}_{2}) = V(\vec{r}_{1} - \vec{a} - \vec{r}_{2} + \vec{a}) = V(\vec{r}_{1} - \vec{r}_{2})$$