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• For very energetic particles, relativistic effects must be taken 
into account

• For relativistic energies, the equation of motion of a charge q 
under magnetic field B is* 

• For v ~ c, the resonance frequency (ν or f) becomes  

f=

• Thus for high energies, either B or ν should increase
• Machines with constant B but variable ν are called synchro-

cyclotrons
• Machines with variable B independent of the change of ν are 

called synchrotrons

Synchroton Accelerators
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• Electron synchrotrons, B varies while ν is held 
constant

• Proton synchrotrons, both B and ν vary
• For v ~ c, the frequency of motion can be expressed

=
• with p=γmc and q=e

• For magnetic field strength of 2 Tesla, one needs a 
radius of 50 m to accelerate an electron to 30 GeV/c.

Synchroton Accelerators
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• Synchrotons use magnets 
arranged in a ring-like 
fashion.

• Multiple stages of 
accelerations are needed 
before reaching the GeV 
scale

• RF power stations are 
located through the ring to 
pump electromagnetic 
energy into the particles

Synchroton Accelerators
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• What are elementary particles?
– Particles that make up matter in the universe
– Cannot be broken into smaller pieces
– Cannot have extended size

• The notion of “elementary particles” has changed from 1930’s 
through present
– In the past, people thought protons, neutrons, pions, kaons, ρ-

mesons, etc. were elementary particles
• What changed?

– The increasing energies of accelerators allow the probing of smaller 
distance scales, revealing sub-structure

• What is the energy needed to probe 0.1 fm?
– From de Broglie Wavelength, we obtain  

Particle Physics 
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• Classical forces:
– Gravitational: every particle is subject to this force, including 

massless ones
– Electromagnetic: only those with electrical charges
– What are the ranges of these forces?

• Infinite!!
– What does this tell you?

• Their force carriers are massless!!
– What are the force carriers of these forces?

• Gravity: graviton (not seen…yet)
• Electromagnetism: Photons

Forces and Their Relative Strengths
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• What other forces?
– Strong force

Holds nucleus together
– Weak force

Responsible for nuclear beta decay
– What are their ranges?

• Very short
– What does this imply?

• Their force carriers are massive (especially true for weak force)

• All four forces can act at the same time!!! 

Forces and Their Relative Strengths
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• The strengths can be obtained from the potential 
• Considering two protons separated by a distance r:

Magnitude of Coulomb and gravitational potential are

– q: magnitude of the momentum transfer
• What do you observe?

– The absolute values of the potential  decreases quadrati with 
increasing momentum transfer

– The relative strength is independent of momentum transfer 

Relative Strengths of Forces
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• Using Yukawa potential form, the magnitudes of strong and 
weak potential can be written as

– gW and gs: coupling constants or effective charges
– mW and mπ: masses of force mediators

• The values of the coupling constants can be estimated from 
experiments

Relative Strengths
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• We could think of π as the strong force mediator w/

• From observations of beta decays,  
• However there still is an explicit dependence on 

momentum transfer
– Since we are considering two protons, we can replace the 

momentum transfer, q, with the mass of protons

Relative Strengths
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• The relative strength between the Strong and EM  
potentials  is

• And that between EM and weak potentials is

Relative Strengths
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• The ranges of forces also affect interaction time
– Typical time for Strong interaction ~10-24sec

• What is this?
• A time that takes light to traverse the size of a proton (~1 fm)

– Typical time for EM force ~10-20 – 10-16 sec
– Typical time for Weak force ~10-13 – 10-6 sec

• The forces have different characteristic energy scales, 
which are used along with their interaction type to 
classify elementary particles

Interaction Time



13

• Prior to  the quark model, all known elementary 
particles were divided in four groups depending on the 
nature of their interactions

Elementary Particles
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• How do these particles interact??
– All particles, including photons and neutrinos, participate in 

gravitational interactions
– Photons can interact electromagnetically with any particles 

with electric charge
– All charged leptons participate in both EM and weak 

interactions
– Neutral leptons do not have EM couplings
– All hadrons (Mesons and baryons) responds to the strong 

force and appear to participate in all the interactions

Elementary Particles
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• Bosons
– All have integer spin angular momentum
– All mesons are bosons

• Fermions
– All have half-integer spin angular momentum
– All leptons and baryons are fermions

• All particles have anti-particles
– What are anti-particles?

• Particles that have same mass as the normal particle but with opposite quantum 
numbers

– What is the anti-particle of 
• A π0?
• A neutron?
• A K0?
• A Neutrino?
• An electron

Bosons, Fermions,and Antiparticles (Oh My)

PHYS 3446  Andrew BrandtThursday April 23,  2015
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• All particles can be classified as bosons or fermions
– Bosons follow Bose-Einstein statistics

• Quantum mechanical wave function is symmetric under exchange 
of any pair of bosons

• xi: space-time coordinates and internal quantum numbers of 
particle i

– Fermions obey Fermi-Dirac statistics
• Quantum mechanical wave function is anti-symmetric under 

exchange of any pair of Fermions 

• Pauli exclusion principle is built into the wave function
– For xi=xj, 

Elementary Particles: Bosons and Fermions
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( )1 32 , ,... ., ..F i nx xx x xΨ−

F−Ψ
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• When can an interaction occur?
– If it is kinematically allowed
– If it does not violate any recognized conservation laws

• Eg. A reaction that violates charge conservation will not occur
– In order to deduce conservation laws, a full theoretical 

understanding of forces are necessary
• Since we do not have full theory for all the forces

– Many of general conservation rules for particles are based on 
experiment

• One easily observed conservation law is lepton number 
conservation
– While photon and meson numbers are not conserved 

Quantum Numbers
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• Can the decay                       occur?
– Kinematically??

• Yes, proton mass is a lot larger than the sum of the two masses
– Electrical charge?

• Yes, it is conserved

• But this decay does not occur (<1040/sec)
– Why?

• Must be a conservation law that prohibits this decay
– What could it be?

• An additive and conserved quantum number, Baryon number (B)
• All baryons have B=1
• Anti-baryons? (B=-1)
• Photons, leptons and mesons have B=0

• Since proton is the lightest baryon, it does not decay.

Baryon Numbers
0p e π+→ +
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• Quantum number of leptons
– All leptons carry L=1 (particles) or L=-1 (antiparticles)
– Photons or hadrons carry L=0

• Lepton number is a conserved quantity
– Total lepton number must be conserved
– Lepton numbers by species must be conserved
– This is an empirical law necessitated by experimental observation (or 

lack thereof)
• Consider the decay

– Does this decay process conserve energy and charge?
• Yes

– But it hasn’t been observed, why?
• Due to the lepton number conservation

Lepton Numbers

e e π π− − − −+ → +
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Lepton Number Assignments
Leptons 

(anti-leptons)
Le Lµ Lτ L=Le+Lµ+Lt

e- (e+) 1 (-1) 0 0 1 (-1)
1 (-1) 0 0 1 (-1)

0 1 (-1) 0 1 (-1)
0 1 (-1) 0 1 (-1)
0 0 1 (-1) 1 (-1)
0 0 1 (-1) 1 (-1)

( ) e eν ν

( ) µ µν ν

( ) µ µ− +

( ) τ τν ν

( ) τ τ− +
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• Can the following decays occur?

– Case 1: L is conserved but Le and Lµ not conserved
– Case 2: L is conserved but Le and Lµ not conserved
– Case 3: L is conserved, and Le and Lµ are also conserved

Decays
Le

Lµ

Lτ

L=Le+Lµ+Lτ

Lepton Number Conservation

eµ γ− −→ + e e eµ − − + −→ + + ee µµ ν ν− −→ + +

0 1 0→ +

1 0 0→ +

0 0 0→ +

1 1 0→ +

0 1 1 1→ − +

1 0 0 0→ + +

0 0 0 0→ + +

1 1 1 1→ − +

0 1 1 0→ − +

1 0 0 1→ + +

0 0 0 0→ + +

1 1 1 1→ − +

total L not especially useful
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• Baryon Number
– An additive and conserved quantum number, Baryon 

number (B)
– All baryons have B=1
– Anti-baryons? (B=-1)
– Photons, leptons and mesons have B=0

• Lepton Number
– Quantum number assigned to leptons
– All leptons carry L=1 (particles) or L=-1 (antiparticles)
– Photons or hadrons carry L=0
– Total lepton number must be conserved
– Lepton numbers by species must be conserved

Quantum Number Summary
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• From cosmic ray shower observations
– K-mesons and Σ and Λ0 baryons are produced strongly w/ large x-sec

• But their lifetime typical of weak interactions (~10-10 sec)
• Are produced in pairs – a K with a  Σ or a K with a  Λ0

– Gave an indication of a new quantum number
• Consider the reaction

– K0 and Λ0 subsequently decay 
– and 

• Observations about Λ0

– Always produced w/ K0 never with  just a π0

– Produced with a  K+ but not with a K-

Strangeness

pπ − + →

0Λ →

0p Kπ π− + −+ → + + Λ
0p Kπ π− − ++ → + + Λ 0pπ π π− − ++ → + + Λ

0 0K + Λ

0K →pπ − + π π+ −+
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– Λ0 at v~0.1c decays in about 0.3cm
• Lifetime of Λ0 baryon is

• The short/intermediate lifetime of these 
strange particles indicate weak decay

• Further observation of cross section measurements
– The cross section for reactions                                       and                                                    

with 1GeV/c pion momenta are ~ 1mb
• Whereas the total pion-proton scattering cross section is ~ 30mb
• The interactions are strong interactions

Strangeness

0
10

9
0.3 10 sec

3 10 /
cm
cm s

τ −
Λ

≈ =
×

0 0p Kπ − + → + Λ

0p Kπ π− + −+ → + + Λ
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• Strangeness quantum number
– Murray Gell-Mann and Abraham Pais proposed a new 

additive quantum number that are carried by these particles
– Conserved in strong interactions
– Violated in weak decays
– S=0 for all ordinary mesons and baryons as well as photons 

and leptons
– For any strong associated-production reaction w/ the initial 

state S=0, the total strangeness of particles in the final state 
should add up to 0.

Strangeness
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• Based on experimental observations of reactions and 
w/ an arbitrary choice of S(K0)=1, we obtain 
– S(K+)=S(K0)=1 and Σ(K−)=Σ(Κ0)=-1
– S(Λ0)=S(Σ+)=S(Σ0)=S(Σ-)=-1
– Does this work for the following reactions?
–
–

• For strong production reactions                               and

– cascade particles                                  if 

Strangeness

K Kp− − ++ → Ξ +

( ) ( )0 2S S−Ξ = Ξ = − ( ) ( )0S K K 1S −= = −

0 0K K  p ++ → Ξ +

0p Kπ π− + −+ → + + Λ
0 0p Kπ − + → + Λ
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• Let’s look at the reactions again

– This is a strong interaction
• Strangeness must be conserved
• S: 0 + 0  +1 -1

• How about the decays of the final state particles?
– and 
– These decays are weak interactions so S is not conserved
– S: -1  0 + 0     and    +1  0 + 0

• A not-really-elegant solution
– S only conserved in Strong and EM interactions  Unique 

strangeness quantum numbers cannot be assigned to leptons
• Leads to the hypothesis of strange quarks

More on Strangeness
pπ − + →

0 pπ −Λ → +

0 0K + Λ

0K π π+ −→ +
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• Strong force does not depend on the charge of the particle
– Nuclear properties of protons and neutrons are very similar
– From the studies of mirror nuclei, the strengths of p-p, p-n and n-n 

strong interactions are essentially the same
– If corrected by EM interactions, the x-sec between n-n and p-p are the 

same
• Since strong force is much stronger than any other forces, we 

could imagine a new quantum number that applies to all 
particles
– Protons and neutrons are two orthogonal mass eigenstates of the 

same particle like spin up and down states

Isospin Quantum Number

1
  and

0
p

 
=  
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0
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1
 

=  
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• Protons and neutrons are degenerate in mass because of some 
symmetry of the strong force
– Isospin symmetry  Under the strong force these two particles 

appear identical
– Presence of Electromagnetic or Weak forces breaks this symmetry, 

distinguishing p from n
• Isospin works just like spin

– Protons and neutrons have isospin ½  Isospin doublet
– Three pions, π+, π- and π0, have almost the same masses
– X-sec by these particles are almost the same after correcting for EM 

effects
– Strong force does not distinguish these particles  Isospin triplet

Isospin Quantum Number

1
0 ,
0
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0
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• This QN is found to be conserved in strong interactions
• But not conserved in EM or Weak interactions
• Isospin no longer used, replaced by quark model

Isospin Quantum Number
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• Baryon Number
– An additive and conserved quantum number, Baryon number (B)
– This number is conserved in strong interactions and EM but not 

necessarily in weak interactions
• Lepton Number

– Quantum number assigned to leptons
– Lepton numbers by species and the total lepton numbers must be 

conserved (EM+EW)
• Strangeness Numbers

– Conserved in strong interactions
– But violated in weak interactions

• Isospin Quantum Numbers
– Conserved in strong interactions
– But violated in weak and EM interactions

Quantum Numbers
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• Some quantum numbers are conserved in 
strong interactions but not in electromagnetic 
and weak interactions
– Inherent reflection of underlying forces

• Understanding conservation or violation of 
quantum numbers in certain situations is 
important for formulating quantitative 
theoretical framework

Quantum Number Conservation
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• Three types of weak interactions
– Hadronic decays: Only hadrons in the final state

– Semi-leptonic decays: both hadrons and leptons are present

– Leptonic decays: only leptons are present

Weak Interactions

0Λ →

n →

µ − →

pπ − +

ep e ν−+ +

ee µν ν− + +
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• When is a quantum number conserved?
– When there is an underlying symmetry in the system
– When the quantum number is not affected by changes in the 

physical system
• Noether’s theorem: If there is a conserved quantity

associated with a physical system, there exists an 
underlying invariance or symmetry principle responsible 
for this conservation.

• Symmetries provide critical restrictions in formulating 
theories

Symmetry
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• Consider an isolated non-relativistic physical system of 
two particles interacting through a potential that only 
depends on the relative distance between them
– EM and gravitational force

• The total kinetic and potential energies of the system 
are:                                 and 

• The equations of motion are then

Symmetries in Lagrangian Formalism?
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• If we perform a linear translation of the origin of 
coordinate system by a constant vector
– The position vectors of the two particles become 

– But the equations of motion do not change since        is a 
constant vector

– This is due to the invariance of the potential V under the 
translation

Symmetries in Lagrangian Formalism

1r →
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