PHYS 3446 – Lecture #2

Thurssday, Jan. 22 ,2015 Dr. **Brandt**

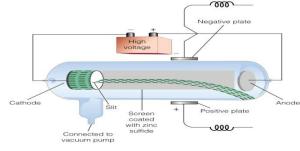
- 1. Introduction
- 2. History of Atomic Models
- 3. Rutherford Scattering
- 4. Rutherford Scattering with Coulomb force

Why do Physics?

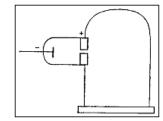
- Exp. To understand nature through experimental observations and measurements (**Research**)
 - Establish limited number of fundamental laws, usually with mathematical expressions
 Predict nature
- Theory '
 - \Rightarrow Theory and Experiment work hand-in-hand
 - \Rightarrow Theory works generally under restricted conditions
 - \Rightarrow Discrepancies between experimental measurements and theory presents opportunities to improve understanding
 - \Rightarrow Understanding leads to applications (electricity, computers, etc.)

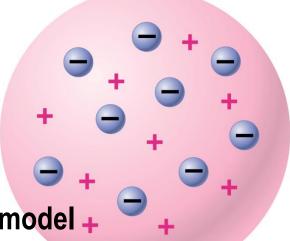
Thursday, Jan. 22, 2015

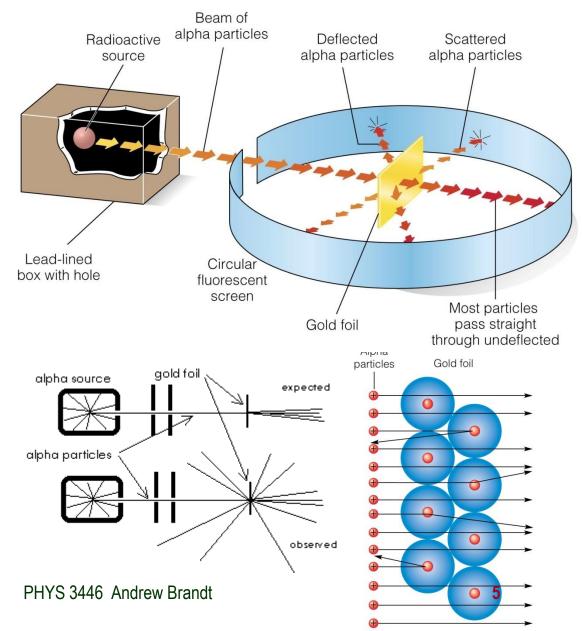
Quantum Mechanics


- Cannot adequately describe small scale phenomena with classical mechanics and E&M
- The study of atomic structure led to quantum mechanics (QM)
 - Long range E&M force is responsible for holding atoms together
 - Yet it is sufficiently weak that QM can be used to reliably predict properties of atoms
- The Coulomb force cannot account for the existence of nuclei:
 - The Coulomb force is attractive only for oppositely charged particles, yet a nucleus consisting totally of protons and neutrons can be stable? This implies a force that holds positively charged particles together
- The known forces in nature (not just gravity and E&M!)
 - Strong ~ 1
 - Electro-magnetic ~ 10⁻²
 - Weak ~ 10⁻⁵
 - Gravitational ~ 10^{-38}

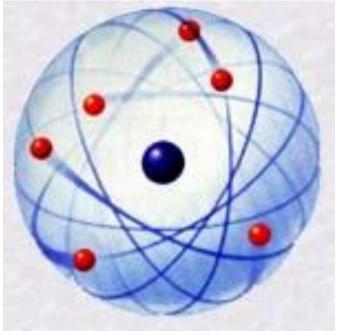
Evolution of Atomic Models

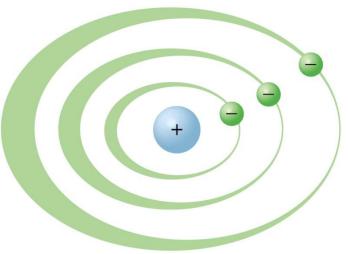

- 1803: Dalton's billiard ball model
- 1897: J.J. Thompson Discovered electrons
 - Built on all work w/ cathode tubes
 - Called corpuscles
 - Made a bold claim that these make up atoms
 - Measured charge to mass ratio
- 1904: J.J. Thompson Proposed a "plum pudding" model of atoms
 - Negatively charged electrons embedded in a uniformly distributed positive charge


personally I prefer chocolate chip cookie model +



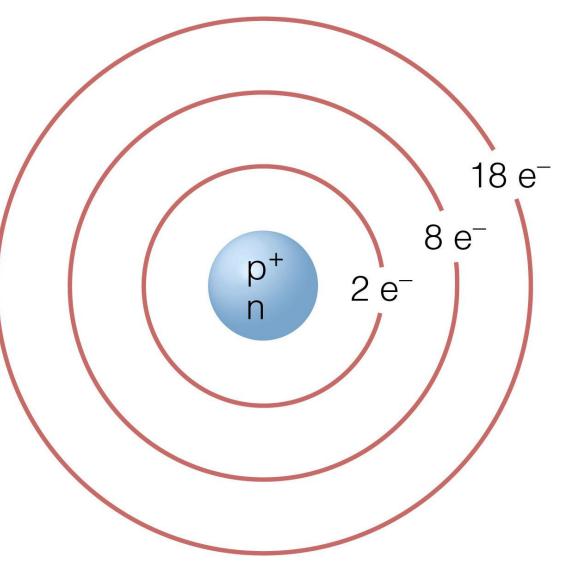
Rutherford Scattering


• 1911: Geiger and Marsden with Rutherford performed a scattering experiment firing alpha particles at a thin gold foil

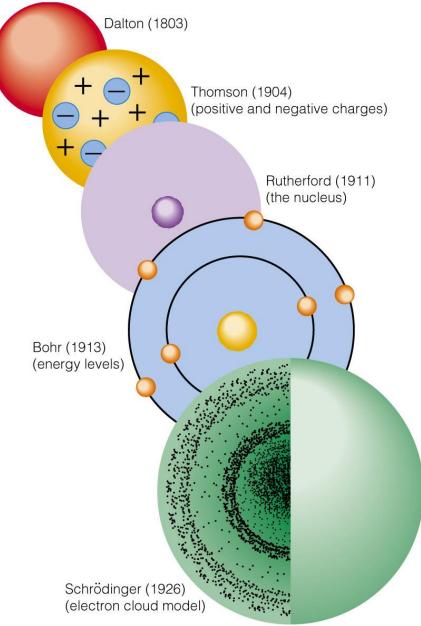


Planetary Model

- 1912: Rutherford's planetary model, an atomic model with a positively charged heavy core surrounded by circling electrons
 - Unstable Why?
 - The electrons will eventually get pulled in to the nucleus, destroying the atom

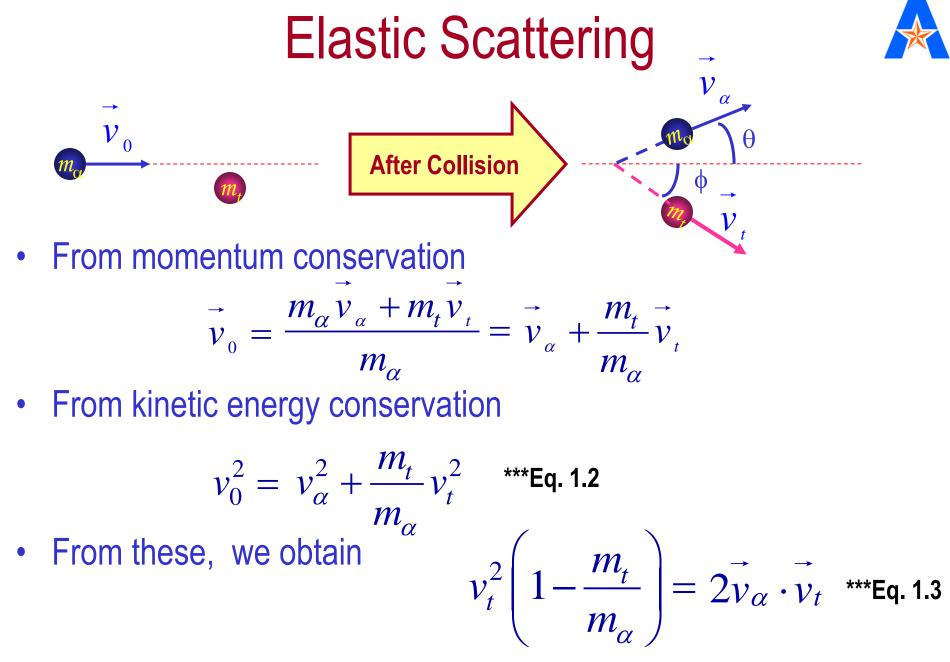


Bohr Model


- 1913: Neils
 Bohr proposed
 the Orbit Model,
 where electrons
 occupy well
 quantified orbits
 - Electrons can only transition to pre-defined orbits

PHYS 3446 Andrew Brandt

Electron Cloud Model


 1926: Schrödinger and de Broglie proposed the Electron Cloud Model based on quantum mechanics

Rutherford Scattering Kinematics

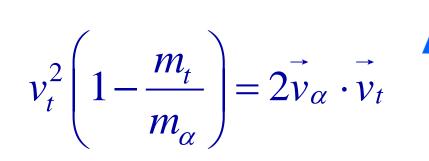
- A fixed target experiment with alpha particle as a projectile fired at a thin gold foil
 - Alpha particle's energy is low → Speed is well below 0.1c (non-relativistic)
- Assume an elastic scattering of the particles
- What are the conserved quantities in an elastic scattering?
 - Momentum
 - Kinetic Energy (is K.E. conserved in any type of scattering?)
- Conservation vs. Invariant

Thursday, Jan. 22, 2015

PHYS 3446 Andrew Brandt

Analysis Case 1

• If $m_t << m_{\alpha}$,


$$v_t^2 \left(1 - \frac{m_t}{m_\alpha} \right) = 2 \vec{v}_\alpha \cdot \vec{v}_t$$

- left-hand side is positive
- v_{α} and v_t must be in the same direction (both positively or negatively directed)

l

- Using the actual masses
- $m_e \approx 0.5 MeV/c^2$ and $m_\alpha \approx 4 \times 10^3 MeV/c^2$
- We obtain $v_e = v_t \le 2v_{\alpha}$
- If $m_t = m_e$, then $m_t/m_{\alpha} \sim 10^{-4}$. $\rightarrow v_{\alpha} \approx v_0$ (Eq. 1.2)
- Thus, $p_e/p_{\alpha 0}$ <10⁻⁴.
- Change of momentum of alpha particle is negligible

Analysis Case 2

- If $m_t >> m_{\alpha}$,
 - left-hand side of the above becomes negative
 - v_{α} and v_{t} in opposite direction
 - Using the actual masses
 - $m_t \approx m_{Au} \approx 2 \times 10^5 MeV / c^2$ and $m_\alpha \approx 4 \times 10^3 MeV / c^2$
 - We obtain $v_t \leq 2m_\alpha v_\alpha / m_t$
 - If $m_t = m_{Au}$, then $m_t/m_{\alpha} \sim 50$. $\rightarrow v_{\alpha} \approx \pm v_0$ (Eq 1.2)
 - Thus, p_{Au} <2 $p_{\alpha 0}$
 - alpha particle deflected backwards

HW 1 (due 1/29

- Compute the masses of electron, proton, neutron and alpha particles in GeV/c² starting from the SI mass (kg).
- 2. Compute the gravitational and the Coulomb force for a Hydrogen atom with the electron and proton separated by 5x10⁻¹¹m and calculate the ratio Fcoul/Fgrav.
- 3. Derive the following equations in your book:
 - Eq. # 1.3, 1.17, 1.32
 - Show detailed work and any necessary explanation
- 4. Is there a higher probability of an alpha particle scattering off a foil if there were no Coulomb force? What if there were no strong force?
- Calculate the wavelength of an electron with velocity a) 1x10⁶ m/sec
 b)1x10⁸ m/sec